Skip to main content
Log in

Preparation, Characterization and Solid-State Emission of Metal Complex-Cloisite Nanohybrids (MC-C, M = Ru (II) and Cu (II))

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The presence of Na+ in the Cloisite Na+ mineral allows modification of its interlayer space to achieve a better compatibility with the host matrix and ion-exchange with a cationic metal complex. The aim of this research is to prepare two new metal complex-Cloisite (MC-C) nanohybrids using reaction of Cloisite Na+ with the cationic Ru (II) and Cu (II) complexes, [Ru (tpy) 2] 2+ and [Cu (Pir) (phen) (H2O) 2]+, in an aqueous solution for the first time. The X-ray diffraction (XRD) analysis of the modified clays has shown an increase in its interlayer distance as compared to the unmodified Cloisite Na+. The positions of the basal reflections in the XRD patterns of the modified clays were shifted to a higher d value indicating the expansion in their interlayer distances. The field-emission scanning electron microscopy has shown a homogeneous morphology for the modified clays. The thermal behavior of these novel hybrid materials was also investigated by thermogravimetric analysis. The solid state fluorescence spectra of the modified clays have shown that both cationic complexes exhibit a significant fluorescence emission at room temperature when intercalated into Cloisite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morimoto K, Nakae T, Ohara K, Tamura K, Nagaoka SI, Sato H (2012) Dual emitting Langmuir–Blodgett films of cationic iridium complexes and montmorillonite clay for oxygen sensing. New J Chem 36:2467–2471

    Article  CAS  Google Scholar 

  2. Bezaatpour A, Behzad M, Jahed V, Amiri M, Mansoori Y, Rajabalizadeh Z, Sarvi S (2012) Cu (II) schiff base complexes on montmorillonite as nano-reactor heterogeneous catalysts for the epoxidation of cyclooctene: synthesis, characterization and immobilization. React Kinet Mech Cat 107:367–381

    Article  CAS  Google Scholar 

  3. Ennajih H, Gueddar H, El Kadib A, Bouhfid R, Bousmina M, Essassi EM (2012) Intercalation of nickel and cobalt thiabendazole complexes into montmorillonite. Appl Clay Sci 65–66:139–142

    Article  Google Scholar 

  4. Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf B 108:358–365

    Article  CAS  Google Scholar 

  5. Ayodele OB, Hameed BH (2013) Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. J Ind Eng Chem 19:966–974

    Article  CAS  Google Scholar 

  6. Li Z, Ding H, Wu S, Liu H, Su H, Sun J, Zheng D, Huo Q, Guan J, Kan Q (2013) Tetraazamacrocycle complexes of Cu (II) and VO (IV) exchanged in the interlayers of montmorillonite clay: heterogeneous catalysts for the aerobic oxidation of styrene. Mater Res Bull 48:1920–1926

    Article  CAS  Google Scholar 

  7. Boukhatem H, Djouadi L, Abdelaziz N, Khalaf H (2013) Synthesis, characterization and photocatalytic activity of CdS-montmorillonite nanocomposites. Appl Clay Sci 72:44–48

    Article  CAS  Google Scholar 

  8. Cao Z, Liao Z, Wang X, Su S, Feng J, Zhu J (2013) Preparation and properties of NBR composites filled with a novel black liquor-montmorillonite complex. J Appl Polym Sci 127:3725–3730

    Article  CAS  Google Scholar 

  9. Wu Y, Zhou N, Li W, Gu H, Fan Y, Yuan J (2013) Long-term and controlled release of chlorhexidine-copper (II) from organically modified montmorillonite (OMMT) nanocomposites. Mater Sci Eng C 33:752–757

    Article  Google Scholar 

  10. Kuźniarska-Biernacka I, Pereira C, Carvalho AP, Pires J, Freire C (2011) Epoxidation of olefins catalyzed by manganese (III) salen complexes grafted to porous heterostructured clays. Appl Clay Sci 53:195–203

    Article  Google Scholar 

  11. Wang X, Wang D, Liang P, Liang X (2013) Synthesis and properties of an insoluble chitosan resin modified by azamacrocycle copper (II) complex for protein hydrolysis. J Appl Polym Sci 128:3280–3288

    Article  CAS  Google Scholar 

  12. Kurokawa H, Nakazato Y, Tahara S, Katakura T, Ishihama Y, Sakuragi T, Miura H (2013) Copolymerization of ethylene with vinyl monomers using heterogeneous catalysts consisting of α-diimine Ni (II) complexes immobilized into a fluorotetrasilicic mica interlayer in the presence of an alkylaluminum compound. Macromol React Eng 7:125–134

    Article  CAS  Google Scholar 

  13. Abbenhuis HCL (2000) Advances in homogeneous and heterogeneous catalysis with metal-containing silsesquioxanes. Chem Eur J 6:25–32

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-Hitzky E, Van Meerbeeck A (2006) Handbook of clay science. F. Theng, B.K.G. Lagaly, (Eds.) Bergaya, Elsevier, Amsterdam

  15. Takahashi T, Yamaguchi M (1991) Host-guest interaction between swelling clay minerals and poorly water-soluble drugs. 1: complex formation between a swelling clay mineral and griseofulvin. J Incl Phenom Macrocycl Chem 10:283–297

    Article  CAS  Google Scholar 

  16. He H, Ma Y, Zhu J, Yuan P, Qing Y (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configureuration. Appl Clay Sci 48:67–72

    Article  CAS  Google Scholar 

  17. Ke YC (2005) Stroeve P Polymer-layered silicate and silica nanocomposites. Amsterdam, the Netherlands.

  18. Lagaly G, Ogawa M, Dekany I (2006) Clay mineral organic interactions. Handbook of Clay Science. F. Bergaya, B.K.G. Theng, G. Lagaly, (Eds) Chapter 7.3

  19. Wang HW, Dong RX, Liu CL, Chang HY (2007) Effect of clay on properties of polyimide-clay nanocomposites. J Appl Polym Sci 104:318–324

    Article  CAS  Google Scholar 

  20. Adams JM, Gabbutt AJ (1990) Interaction of smectites with organic photochromic compounds. J Incl Phenom Macrocycl Chem 9:63–83

    Article  CAS  Google Scholar 

  21. Mallakpour S, Dinari M (2013) Preparation, characterization, and thermal properties of organoclay hybrids based on trifunctional natural amino acids. J Therm Anal Calorim 111:611–618

    Article  CAS  Google Scholar 

  22. Kakiage M, Ando S (2011) Effects of dispersion and arrangement of clay on thermal diffusivity of polyimide-clay nanocomposite film. J Appl Polym Sci 119:3010–3018

    Article  CAS  Google Scholar 

  23. Isci S, Uslu YO, Ice OI (2009) The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays. Mater Charact 60:432–436

    Article  CAS  Google Scholar 

  24. Dias PM, De Faria DLA, Constantino VRL (2000) Spectroscopic studies on the interaction of tetramethylpyridylporphyrins and cationic clays. J Incl Phenom Macrocycl Chem 38:251–266

    Article  CAS  Google Scholar 

  25. Ma X, Lee NH, Oh HJ, Hwang JS, Kim SJ (2010) Preparation and characterization of silica/polyamide-imide nanocomposite thin films. Nanoscale Res Lett 5:1846–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Li F, Rosen MJ (2000) Adsorption of gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay. J Colloid Interface Sci 224:265–271

    Article  CAS  PubMed  Google Scholar 

  27. Mallakpour S, Dinari M (2011) Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+. Appl Clay Sci 51:353–359

    Article  CAS  Google Scholar 

  28. Mallakpour S, Dinari M, Hadadzadeh H (2013) Insertion of fluorophore dyes between Cloisite Na+ layered for preparation of novel organoclays. J Incl Phenom Macrocycl Chem 77:463–470

    Article  CAS  Google Scholar 

  29. Mallakpour S, Dinari M (2012) Synthesis and properties of biodegradable poly (vinyl alcohol)/ organo-nanoclay bionanocomposites. J Polym Environ 20:732–740

    Article  CAS  Google Scholar 

  30. Zhao F, Wana C, Baoa X, Kandasubramanian B (2009) Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsequioxane. J Colloid Interface Sci 333:164–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division of Isfahan University of Technology (IUT) for partial financial support. Further financial support from the National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC) and the Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Dinari, M., Hadadzadeh, H. et al. Preparation, Characterization and Solid-State Emission of Metal Complex-Cloisite Nanohybrids (MC-C, M = Ru (II) and Cu (II)). J Fluoresc 24, 1841–1848 (2014). https://doi.org/10.1007/s10895-014-1472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1472-2

Keywords

Navigation