Skip to main content
Log in

Excimer Emission in Norepinephrine and Epinephrine Drugs with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The inclusion complexation behavior of norepinephrine (NORE) and epinephrine (EPIN) with native cyclodextrins (α-CD and β-CD) were investigated by UV-visible, fluorimetry, time-resolved fluorescence, SEM, TEM, FT-IR, 1H NMR, DSC, powder XRD and PM3 methods. Single emission was observed in aqueous solution where as dual emission (excimer) noticed in the CD solutions. Both drugs form 1:1 drug-CD complexes in lower CD concentrations and 1:2 CD-drug2 complexes in the higher CD concentrations. Time-resolved fluorescence studies indicated that both drugs showed single exponential decay in water and biexponential decay in CD. Nano-sized self-aggregated particles of drug-CD were found by TEM studies. Molecular modeling studies indicated that aliphatic chain part of the drug was entrapped in the CD cavity. Thermodynamic parameters and binding affinity of complex formation of the CD were determined according to PM3 method. The PM3 results were in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xue QH (1978) Physiological and pathological chemistry of nervous system. Science Press, Beijing Science Press, Beijing

    Google Scholar 

  2. Sun S, Weil MH, Tang W, Kamohara T, Klouche K (2001) Alpha-methylnorepinephrine, a selective alpha2-adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol 37:951

    Article  CAS  PubMed  Google Scholar 

  3. Efrati O, Barak A, Ben-Abraham R, Modan-Moses D, Berkovitch, Manisterski Y, Lotan D, Barzilay Z, Paret G (2003) Should vasopressin replace adrenaline for endotracheal drug administration? Crit Care Med 31:572

    Article  CAS  PubMed  Google Scholar 

  4. Manisterski Y, Vaknin Z, Ben-Abraham R, Efrati O, Lotan D, Berkovitch M, Barak MA, Barzilay Z, Paret G (2002) Endotracheal epinephrine: a call for larger doses. Anesth Analg 95:1037

    CAS  PubMed  Google Scholar 

  5. Martin Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033

    Article  Google Scholar 

  6. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78

    Article  CAS  PubMed  Google Scholar 

  7. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017

    Article  CAS  PubMed  Google Scholar 

  8. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743

    Article  CAS  PubMed  Google Scholar 

  9. Fromming KH, Szejtli J (1994) Cyclodextrins in pharmacy. Kluwer Academic Publishers, Dordrecht, p 413

    Book  Google Scholar 

  10. Yan C, Li X, Xiu Z, Hao C (2006) A quantum-mechanical study on the complexation of β-cyclodextrin with quercetin. J Mol Struct (THEOCHEM) 764:95

    Article  CAS  Google Scholar 

  11. Seridi L, Boufelfel A (2011) Molecular modeling study of Lamotrigine/β-cyclodextrin inclusion complex. J Mol Liq 158:151

    Article  CAS  Google Scholar 

  12. Premakumari J, Allan Gnana Roy G, Antony Muthu Prabhu A, Venkatesh G, Subramanian VK, Rajendiran N (2011) Spectral characteristics of sulphadiazine, sulphisomidine: effect of solvents, pH and β-cyclodextrin. Phys Chem Liq 49:108

    Article  CAS  Google Scholar 

  13. Antony Muthu Prabhu A, Venkatesh G, Rajendiran N (2010) Spectral characteristics of sulfa drugs: effect of solvents, pH and β-cyclodextrin. J Solut Chem 39:1061

    Article  Google Scholar 

  14. Antony Muthu Prabhu A, Subramanian VK, Rajendiran N (2012) Excimer formation in inclusion complexes of β-cyclodextrin with salbutamol, sotalol and atenolol: spectral and molecular modeling studies. Spectrochim Acta A 96:95

    Article  CAS  Google Scholar 

  15. Sankaranarayanan RK, Siva S, Venkatesh G, Antony Muthu Prabhu A, Rajendiran N (2011) Dual fluorescence of dothiepin, doxepin drugs—effect of solvents and β-cyclodextrin. J Mol Liq 161:107

    Article  CAS  Google Scholar 

  16. Antony Muthu Prabhu A, Venkatesh G, Rajendiran N (2010) Unusual spectral shifts of imipramine and carbamazepine drugs. J Fluoresc 20:1199

    Article  PubMed  Google Scholar 

  17. Venkatesh G, Thulasidhasan J, Rajendiran N (2014) A spectroscopic and molecular modeling studies of the inclusion complexes of orciprenaline and terbutaline drugs with native and modified cyclodextrins. J Incl Phenom Macrocycl Chem 78:225–237

    Article  CAS  Google Scholar 

  18. Antony Muthu Prabhu A, Rajendiran N (2012) Encapsulation of Labetalol, Pseudoephedrine in β-cyclodextrin Cavity: Spectral and Molecular Modeling Studies. J Fluoresc 22:1461

    Article  PubMed  Google Scholar 

  19. Sivasankar T, Antony Muthu Prabhu A, Karthick M, Rajendiran N (2012) Encapsulation of vanillylamine by native and modified cyclodextrins: spectral and computational studies. J Mol Struct 1028:57

    Article  CAS  Google Scholar 

  20. Paul BK, Samanta A, Guchhait N (2010) Modulation of excited-state intramolecular proton transfer reaction of 1-hydroxy-2-naphthaldehyde in different supramolecular assemblies. Langmuir 26:3214

    Article  CAS  PubMed  Google Scholar 

  21. Mallick A, Haldar B, Maiti S, Bera SC, Chattopadhyay N (2005) Photophysical study of 3-acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine in biomimetic reverse micellar nanocavities: a spectroscopic approach. J Phys Chem B 109:14675

    Article  CAS  PubMed  Google Scholar 

  22. Das P, Chakrabarty A, Haldar B, Mallick A, Chattopadhyay N (2007) Effect of cyclodextrin nanocavity confinement on the photophysics of a beta-carboline analogue: a spectroscopic study. J Phys Chem B 111:7401

    Article  CAS  PubMed  Google Scholar 

  23. Singh RB, Mahanta S, Guchhait N (2008) Study of interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde with serum albumins: a spectroscopic study. J Photochem Photobiol B 91:1

    Article  Google Scholar 

  24. Yan CL, Xiu ZL, Li XH, Hao C (2007) Molecular modeling study of beta-cyclodextrin complexes with (+)-catechin and (-)-epicatechin. J Mol Graph Model 26:420

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhuri S, Chakraborty S, Sengupta PK (2010) Encapsulation of serotonin in β-cyclodextrin nano-cavities: fluorescence spectroscopic and molecular modeling studies. J Mol Struct 975:160

    Article  CAS  Google Scholar 

  26. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Yang LJ, Ma SX, Yang XD, Fan BM (2011) Crassicauline A/β-cyclodextrin host–guest system: preparation, characterization, inclusion mode, solubilization and stability. Carbohydr Polym 84:1321

    Article  CAS  Google Scholar 

  28. Yang LJ, Chen W, Ma SX, Gao YT, Huang R, Yan SJ (2011) Host–guest system of taxifolin and native cyclodextrin or its derivative: preparation, characterization, inclusion mode, and solubilization. Carbohydr Polym 85:629

    Article  CAS  Google Scholar 

  29. Jing B, Chen X, Wang X, Yang C, Xie Y, Qiu H (2007) Self-assembly vesicles made from a cyclodextrin supramolecular complex. J Chem Eur 13:9137

    Article  CAS  Google Scholar 

  30. Li G, McGown LB (1994) Molecular nanotube aggregates of β-cyclodextrins and γ-cyclodextrins linked by diphenylhexatrienes. Science 264:249

    Article  CAS  PubMed  Google Scholar 

  31. Eliadou K, Yannakopoulou K, Rontoyianni A, Mavridis IM (1999) NMR Detection of Simultaneous Formation of [2]- and [3]Pseudorotaxanes in Aqueous Solution between α-Cyclodextrin and Linear Aliphatic α,ω-Aminoacids, an α,ω-Diamine and an α,ω-Diacid of Similar Length, and Comparison with The Solid State Structures. J Org Chem 64:6217

    Article  CAS  Google Scholar 

  32. Steed JW, Foster JA (2010) Exploiting cavities in supramolecular gels. Angew Chem Int Ed 49:6718

    Article  Google Scholar 

  33. Chao J, Li JS, Meng DP, Huang S (2003) Preparation and study on the solid inclusion complex of sparfloxacin with HP-beta-cyclodextrin. Spectrochim Acta Part A Mol Biomol Spectrosc 59:705

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Council of Scientific and Industrial Research [No. 01(2549)/12/EMR-II] and University Grants Commission [F.No. 41-351/2012 (SR)] New Delhi, India. The authors thank Dr. P. Ramamurthy, Director, National centre for ultrafast processes, Madras University for help in the fluorescence lifetime measurements for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendiran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 11690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendiran, N., Mohandoss, T. & Thulasidasan, J. Excimer Emission in Norepinephrine and Epinephrine Drugs with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies. J Fluoresc 24, 1003–1014 (2014). https://doi.org/10.1007/s10895-014-1361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1361-8

Keywords

Navigation