Advertisement

Journal of Fluorescence

, Volume 24, Issue 3, pp 795–801 | Cite as

Rapid Homogenous Time-Resolved Fluorescence (HTRF) Immunoassay for Anthrax Detection

  • Noam Cohen
  • Adva Mechaly
  • Ohad Mazor
  • Morly Fisher
  • Eran ZahavyEmail author
ORIGINAL PAPER

Abstract

Infection with Bacillus anthracsis spores induces an acute anthrax disease that can cause casualties and death in untreated cases. Thus rapid diagnosis of anthrax at early stage of the disease is essential to allow an effective treatment. Here we present the development of rapid and sensitive homogenous time-resolved fluorescence (HTRF) immunoassays based on the energy transfer process of europium cryptate (EuK) donor to AlexaFluor647 acceptor. The energy transfer process is limited to d < 10 nm, making the HTRF an ideal assay for examination of homogenous and complex samples, since only mutual binding of the donor and acceptor antibodies to the analyte would result in positive signal. HTRF assay was developed for the detection of the bacterial Protective Antigen (PA) toxin, a serological marker that correlates with bacteremia in infected hosts, using two monoclonal anti-PA antibodies that specifically recognize two different epitopes on the PA molecule. The assay was sensitive enabling detection of 2 ng/ml PA in the serum of B. anthracsis-infected rabbits in only 15 min assay. Additionally, HTRF assay was developed for the detection of bacterial spores using polyclonal anti-spore antibodies that recognize many epitopes on the bacterial surface. The assay enabled the detection of 2 × 106 spores/ml in 30 min assay and was specific, showing no cross reactivity with closely related non-virulent bacillus cereus strain. This study describes the use of the HTRF assay for the detection of both singled-epitope (proteins) and multi-epitope (particles) as rapid, simple and sensitive method that can be used at the time that fast results are needed to allow an effective medical care.

Keywords

Bacillus anthracis PA Homogenous Time-resolved fluorescence FRET Antibodies Immunodiagnosis 

References

  1. 1.
    Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, Cetron M, Cohen M, Doyle T, Fischer M, Greene C, Griffith KS, Guarner J, Hadler JL, Hayslett JA, Meyer R, Petersen LR, Phillips M, Pinner R, Popovic T, Quinn CP, Reefhuis J, Reissman D, Rosenstein N, Schuchat A, Shieh WJ, Siegal L, Swerdlow DL, Tenover FC, Traeger M, Ward JW, Weisfuse I, Wiersma S, Yeskey K, Zaki S, Ashford DA, Perkins BA, Ostroff S, Hughes J, Fleming D, Koplan JP, Gerberding JL, National Anthrax Epidemiologic Investigation T (2002) Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis 8(10):1019–1028. doi: 10.3201/eid0810.020353 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Cieslak TJ, Eitzen EM Jr (1999) Clinical and epidemiologic principles of anthrax. Emerg Infect Dis 5(4):552–555. doi: 10.3201/eid0504.990418 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kobiler D, Weiss S, Levy H, Fisher M, Mechaly A, Pass A, Altboum Z (2006) Protective antigen as a correlative marker for anthrax in animal models. Infect Immun 74(10):5871–5876. doi: 10.1128/IAI.00792-06 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Fish DC, Lincoln RE (1968) In vivo-produced anthrax toxin. J Bacteriol 95(3):919–924PubMedCentralPubMedGoogle Scholar
  5. 5.
    Kuehn A, Kovac P, Saksena R, Bannert N, Klee SR, Ranisch H, Grunow R (2009) Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores. Clin Vaccine Immunol 16(12):1728–1737. doi: 10.1128/CVI.00235-09 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Stopa PJ (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41(4):237–244PubMedCrossRefGoogle Scholar
  7. 7.
    Zahavy E, Fisher M, Bromberg A, Olshevsky U (2003) Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry. Appl Environ Microbiol 69(4):2330–2339PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Comer JE, Ray BD, Henning LN, Stark GV, Barnewall RE, Mott JM, Meister GT (2012) Characterization of a therapeutic model of inhalational anthrax using an increase in body temperature in New Zealand white rabbits as a trigger for treatment. Clin Vaccine Immunol 19(9):1517–1525PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mabry R, Brasky K, Geiger R, Carrion R Jr, Hubbard GB, Leppla S, Patterson JL, Georgiou G, Iverson BL (2006) Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin Vaccine Immunol 13(6):671–677. doi: 10.1128/CVI.00023-06 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Tang S, Moayeri M, Chen Z, Harma H, Zhao J, Hu H, Purcell RH, Leppla SH, Hewlett IK (2009) Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. Clin Vaccine Immunol 16(3):408–413PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mechaly A, Cohen N, Weiss S, Zahavy E (2013) A novel homogeneous immunoassay for anthrax detection based on the AlphaLISA method: detection of B. anthracis spores and protective antigen (PA) in complex samples. Anal Bioanal Chem 405(12):3965–3972PubMedCrossRefGoogle Scholar
  12. 12.
    Hildebrandt N, Charbonniere LJ, Lohmannsroben HG (2007) Time-resolved analysis of a highly sensitive Forster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol 2007(7):79169. doi: 10.1155/2007/79169 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Soini E, Kojola H (1983) Time-resolved fluorometer for lanthanide chelates–a new generation of nonisotopic immunoassays. Clin Chem 29(1):65–68PubMedGoogle Scholar
  14. 14.
    Hagan AK, Zuchner T (2011) Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem 400(9):2847–2864PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Diamandis EP, Christopoulos TK (1990) Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Anal Chem 62(22):1149A–1157APubMedCrossRefGoogle Scholar
  16. 16.
    Alpha B, Lehn JM, Mathis G (1987) Energy transfer luminescence of europium(III) and terbium(III) cryptates of macrobicyclic polypyridine ligands. Angew Chem Int Ed Engl 26(3):266–267CrossRefGoogle Scholar
  17. 17.
    Mathis G (1999) HTRF(R) technology. J Biomol Screen 4(6):309–314PubMedCrossRefGoogle Scholar
  18. 18.
    Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr Chem Genom 3:22–32CrossRefGoogle Scholar
  19. 19.
    Reuveny S, White MD, Adar YY, Kafri Y, Altboum Z, Gozes Y, Kobiler D, Shafferman A, Velan B (2001) Search for correlates of protective immunity conferred by anthrax vaccine. Infect Immun 69(5):2888–2893PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Rosenfeld R, Marcus H, Ben-Arie E, Lachmi BE, Mechaly A, Reuveny S, Gat O, Mazor O, Ordentlich A (2009) Isolation and chimerization of a highly neutralizing antibody conferring passive protection against lethal Bacillus anthracis infection. PLoS One 4(7):e6351. doi: 10.1371/journal.pone.0006351 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Cohen S, Mendelson I, Altboum Z, Kobiler D, Elhanany E, Bino T, Leitner M, Inbar I, Rosenberg H, Gozes Y, Barak R, Fisher M, Kronman C, Velan B, Shafferman A (2000) Attenuated nontoxinogenic and nonencapsulated recombinant Bacillus anthracis spore vaccines protect against anthrax. Infect Immun 68(8):4549–4558PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z (2001) Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(22):2110–2116PubMedCrossRefGoogle Scholar
  23. 23.
    Knepp AM, Grunbeck A, Banerjee S, Sakmar TP, Huber T (2011) Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 50(4):502–511PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Brensing KA, Dahlmann N, Entzian W, Bidlingmaier F, Klingmuller D (1989) Underestimation of LH and FSH hormone concentrations in a patient with a gonadotropin secreting tumor: the high-dose “hook-effect” as a methodological and clinical problem. Horm Metab Res 21(12):697–698PubMedCrossRefGoogle Scholar
  25. 25.
    Petakov MS, Damjanovic SS, Nikolic-Durovic MM, Dragojlovic ZL, Obradovic S, Gligorovic MS, Simic MZ, Popovic VP (1998) Pituitary adenomas secreting large amounts of prolactin may give false low values in immunoradiometric assays. The hook effect. J Endocrinol Investig 21(3):184–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Noam Cohen
    • 1
  • Adva Mechaly
    • 1
  • Ohad Mazor
    • 1
  • Morly Fisher
    • 1
  • Eran Zahavy
    • 1
    Email author
  1. 1.Department of Infectious Diseases and Department of BiochemistryIsrael Institute for Biological ResearchNess-ZionaIsrael

Personalised recommendations