Journal of Fluorescence

, Volume 24, Issue 1, pp 257–266 | Cite as

Synthesis, Photophysical Properties and Solvatochromism of Meso-Substituted Tetramethyl BODIPY Dyes

  • Lucas Cunha Dias de Rezende
  • Miguel Menezes Vaidergorn
  • Juliana Cristina Biazzotto Moraes
  • Flavio da Silva EmeryEmail author


The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene fluorescent dyes (BODIPYs) were first synthesized almost 50 years ago; however, the exploration of their technological application has only begun in the last 20 years. These dyes possess interesting photophysical properties, increasing interest in their application as fluorescent markers and/or dyes. Herein, we report the synthesis of tetramethyl BODIPY and four meso-substituted dyes (2-thienyl, 4-pyridinyl, 4-fluorophenyl and 4-nitrophenyl derivatives). Their photophysical characterization (absorption spectra, emission spectra, fluorescence quantum yields and time-resolved fluorescence) and solvatochromic behavior were studied. Absorption and emission were barely affected by substituents, with a slightly higher stokes shift observed in the substituted dyes. Substitutions could be associated with a shorter fluorescence lifetime and lower quantum yields. Good correlations were observed between the Catalán solvent descriptors and the photophysical parameters. Also, better correlation was observed between the solvent polarizability descriptor (SP) and photophysical parameters. Overall, only slight solvatochromism was observed. The 4-pyridinyl derivative was the subject of a relatively significant solvatochromism regarding the wavelengths of the emission spectra, with the observation of a bathochromically shifted emission in methanol. The fluorescence quantum yield of the 4-nitrophenyl substituted BODIPY was approximately 30 times higher in hexane, which may be of interest for practical applications.


BODIPY Solvatochromism Photophysical Fluorescence Quantum yield Lifetime 



This work was financed by São Paulo Research Foundation (FAPESP– grant #2011/23342-9), NAP-FTO—USP, INCT-IF. We are grateful to prof. Roberto Santana da Silva and the analytical centre of the institution.

Supplementary material

10895_2013_1293_MOESM1_ESM.docx (807 kb)
ESM 1 (DOCX 807 kb)


  1. 1.
    Treibs A, Kreuzer FH (1968) Difluoboryl-komplexe von di- and tripyrrylmethen. Liebigs Ann Chem 718:208–223CrossRefGoogle Scholar
  2. 2.
    Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 7(7):1184–1201CrossRefGoogle Scholar
  3. 3.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107(11):4891–4932PubMedCrossRefGoogle Scholar
  4. 4.
    Zakerhamidi MS, Moghadam M, Ghanadzadeh A, Hosseini S (2012) Anisotropic and isotropic solvent effects on the dipole moment and photophysical properties of rhodamine dyes. J Lumin 132(4):931–937CrossRefGoogle Scholar
  5. 5.
    Toutchkine A, Kraynov V, Hahn K (2003) Solvent-sensitive dyes to report protein conformational changes in living cells. J Am Chem Soc 125(14):4132–4145PubMedCrossRefGoogle Scholar
  6. 6.
    Bergstrom F, Hagglof P, Karolin J, Ny T, Johansson LBA (1999) The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc Natl Acad Sci U S A 96(22):12477–12481PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Karolin J, Johansson LBA, Strandberg L, Ny T (1994) Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (bodipy) derivatives in liquids, lipid-membranes, and proteins. J Am Chem Soc 116(17):7801–7806CrossRefGoogle Scholar
  8. 8.
    Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1071CrossRefGoogle Scholar
  9. 9.
    Resch-Genger U, Derose PC (2010) Fluorescence standards: classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report). Pure Appl Chem 82(12):2315–2335CrossRefGoogle Scholar
  10. 10.
    Ayres M, Ayres-Júnior M, Ayres DL, Santos AS (2007) BioEstat 5.0-Aplicações Estatísticas nas Áreas das Ciências Biológicas e Médicas. MCT; IDSM; CNPq, BelémGoogle Scholar
  11. 11.
    Spekwin32—optical spectroscopy software. Version, 2012, Accessed 23 March 2013
  12. 12.
    Wu L, Burgess K (2008) A new synthesis of symmetric boraindacene (BODIPY) dyes. Chem Commun 2008(40):4933–4935CrossRefGoogle Scholar
  13. 13.
    Littler BJ, Miller MA, Hung CH, Wagner RW, O’Shea DF, Boyle PD et al (1999) Refined synthesis of 5-substituted dipyrromethanes. J Org Chem 64(4):1391–1396CrossRefGoogle Scholar
  14. 14.
    Bura T, Retailleau P, Ulrich G, Ziessel R (2011) Highly substituted bodipy dyes with spectroscopic features sensitive to the environment. J Org Chem 76(4):1109–1117PubMedCrossRefGoogle Scholar
  15. 15.
    Leen V, Miscoria D, Yin S, Filarowski A, Ngongo JM, Van der Auweraer M et al (2011) 1,7-Disubstituted boron dipyrromethene (BODIPY) dyes: synthesis and spectroscopic properties. J Org Chem 76(20):8168–8176PubMedCrossRefGoogle Scholar
  16. 16.
    Qin WW, Baruah M, Van der Auweraer M, De Schryver FC, Boens N (2005) Photophysical properties of borondipyrromethene analogues in solution. J Phys Chem A 109(33):7371–7384PubMedCrossRefGoogle Scholar
  17. 17.
    Baruah M, Qin WW, Flors C, Hofkens J, Vallee RAL, Beljonne D et al (2006) Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution. J Phys Chem A 110(18):5998–6009PubMedCrossRefGoogle Scholar
  18. 18.
    Pardoen JA, Lugtenburg J, Canters GW (1985) Optical properties of pyrromethene derivatives. Possible excited-state deactivation through proton tunneling. J Phys Chem 89(20):4272–4277CrossRefGoogle Scholar
  19. 19.
    Prieto JB, Arbeloa FL, Martinez VM, Lopez TA, Amat-Guerri F, Liras M et al (2004) Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms. Chem Phys Lett 385(1–2):29–35CrossRefGoogle Scholar
  20. 20.
    Johnson ID, Kang HC, Haugland RP (1991) Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal Biochem 198:228–237PubMedCrossRefGoogle Scholar
  21. 21.
    Arbeloa FL, Prieto JB, Martinez VM, Lopez TA, Arbeloa IL (2004) Intramolecular charge transfer in pyrromethene laser dyes: photophysical behaviour of PM650. Chemphyschem 5(11):1762–1771CrossRefGoogle Scholar
  22. 22.
    Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98(2):377–383CrossRefGoogle Scholar
  23. 23.
    Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The π* scale of solvent polarities. J Am Chem Soc 99(18):6027–6038CrossRefGoogle Scholar
  24. 24.
    Taft RW, Kamlet MJ (1976) The Solvatochromic Comparison Method. 2. The α-scale of Solvent Hydrogen-Bond Donor (HBD) Acidities. J Am Chem Soc 98(10):2886–2894CrossRefGoogle Scholar
  25. 25.
    Catalan J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113(17):5951–5960PubMedCrossRefGoogle Scholar
  26. 26.
    Leen V, Qin W, Yang W, Cui J, Xu C, Tang X et al (2010) Synthesis, spectroscopy, crystal structure determination, and quantum chemical calculations of BODIPY dyes with increasing conformational restriction and concomitant Red-shifted visible absorption and fluorescence spectra. Chem-Asian J 5(9):2016–2026PubMedCrossRefGoogle Scholar
  27. 27.
    Galangau O, Dumas-Verdes C, Meallet-Renault R, Clavier G (2010) Rational design of visible and NIR distyryl-BODIPY dyes from a novel fluorinated platform. Org Biomol Chem 8(20):4546–4553PubMedCrossRefGoogle Scholar
  28. 28.
    Banuelos-Prieto J, Agarrabeitia AR, Garcia-Moreno I, Lopez-Arbeloa I, Costela A, Infantes L et al (2010) Controlling optical properties and function of BODIPY by using asymmetric substitution effects. Chem Eur J 16(47):14094–14105. doi: 10.1002/chem.201002095 Google Scholar
  29. 29.
    Boens N, Leen V, Dehaen W, Wang L, Robeyns K, Qin W et al (2012) Visible absorption and fluorescence spectroscopy of conformationally constrained, annulated BODIPY dyes. J Phys Chem A 116(39):9621–9631PubMedCrossRefGoogle Scholar
  30. 30.
    Lide DR (2004) CRC Handbook of Chemistry and Physics. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc 130(21):6672–6673. doi: 10.1021/ja800570d Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lucas Cunha Dias de Rezende
    • 1
  • Miguel Menezes Vaidergorn
    • 1
  • Juliana Cristina Biazzotto Moraes
    • 1
  • Flavio da Silva Emery
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical Sciences at Ribeirao PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations