Skip to main content

Advertisement

Log in

Rapid and Sensitive Online Determination of Some Selective α1-Blockers by Flow Injection Analysis with Micelle-Enhanced Fluorescence Detection

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A rapid, sensitive and selective flow injection analysis (FIA) method was developed for the determination of some selective α1-blockers including; terazosin (TER), doxazosin (DOX), prazosin (PRZ), and alfuzosin (ALF). The method was based on enhancement of the native fluorescence of the studied drugs in the presence of sodium dodecyl sulfate (SDS). The method was optimized for the buffer type, concentration and pH, surfactant type and concentration, flow rate and detection wavelengths in order to achieve the maximum sensitivity. The results showed that the best sensitivity was obtained by using SDS (10 mM) in phosphate buffer (20 mM, pH = 3), flow rate was 0.5 ml/min and the detector was set at λex = 250 and λem = 389. Under these optimum conditions there was a linear relationship between the concentration and the fluorescence intensity in the range from 5–400 ng ml with correlation coefficient of more than 0.998. The detection and quantitation limits for the studied drugs by the proposed method were 3.2–11.9 ng ml−1 and 10.8–39.7 ng ml−1, respectively. The method was validated in accordance with the requirements of ICH guidelines and shown to be suitable for intended applications. Moreover, the binding constants for α1–blockers –SDS system were determined using the adduct model. The proposed method has been applied successfully for the analysis of the pure forms for studied drugs and also their pharmaceutical formulations and the results were compared with official methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunton LL, Lazo JS, Parker KL (2006) Goodman & Gilman’s the pharmacological basis of therapeutics, vol 11. McGraw-Hill, New York, pp 635–644

  2. Carruthers SG (1994) Adverse effects of alpha 1-adrenergic blocking drugs. Drug Saf: Int J Med Toxicol Drug experience 11(1):12

    Article  CAS  Google Scholar 

  3. Chang ZLB, John F (1991 Terazosin, in Analytical Profiles of Drug Substances, F. Klaus, Editor, Academic Press. p. 693–727

  4. Foye WO, Lemke TL, and Williams DA (2007) Foye’s principles of medicinal chemistry: Lippincott Williams & Wilkins

  5. Frishman WH, Charlap S (1988) Alpha-adrenergic blockers. Med Clin N Am 72(2):427

    PubMed  CAS  Google Scholar 

  6. Griffith RK (2003) Adrenergics and Adrenergic-Blocking Agents. Sixth ed. Burger’s Medicinal Chemistry and Drug Discovery, ed. Abraham DJ. Vol. 6. Morgantown, West Virginia. 37

  7. Abdine H et al (1998) Spectrophotometric and spectrofluorimetric methods for the determination of terazosin in dosage forms. Spectrosc Lett 31(5):969–980

    Article  CAS  Google Scholar 

  8. Alarfaj A, Abdel-Razeq A, and El-Dosary A (2009) Spectrophotonetric Methods for the Determination of Alfuzosin-HCl andCarvedilol in their Formulations

  9. Altiokka G, Atkosar Z (2002) Flow injection analysis of doxazosin mesylate using UV-detection. J Pharm Biomed Anal 27(5):841–844

    Article  PubMed  CAS  Google Scholar 

  10. Arranz A et al (1999) Voltammetric and spectrophotometric techniques for the determination of the antihypertensive drug Prazosin in urine and formulations. J Pharm Biomed Anal 21(4):797–807

    Article  PubMed  CAS  Google Scholar 

  11. Ashour S, Chehna MF, Bayram R (2006) Spectrophotometric determination of alfuzosin HCl in pharmaceutical formulations with some sulphonephthalein dyes. Intl J Biomed Sci 2:273–278

    CAS  Google Scholar 

  12. Aydoğmuş Z, Barla A (2009) Spectrophotometric determination of doxazosin mesylate in tablets by ion-pair and charge-transfer com plexation reactions. J AOAC Int 92(1):131–137

    Google Scholar 

  13. Aydomu Z, Barla A (2008) Spectrophotometric determination of doxazosin mesylate in tablets by ion-pair and charge-transfer complexation reactions. J AOAC Int 92(1):131–137

    Google Scholar 

  14. de Betoño Fdez S, Arranz Garcia A, Arranz Valentín JF (1999) UV-Spectrophotometry and square wave voltammetry at nafion-modified carbon-paste electrode for the determination of doxazosin in urine and formulations. J Pharm Biomed Anal 20(4):621–630

    Article  Google Scholar 

  15. Ishaq BM, et al. (2011) Colorimetric Determination of Alfuzosin HCl in Pharmaceutical Formulations. Journal of Pharmacy Research. 4

  16. Ozgur MU, Sungur S (2002) A spectrophotometric method for the determination of prazosin hydrochloride in tablets. Turk J Chem 26(5):691–696

    CAS  Google Scholar 

  17. Bebawy L, Moustafa A, Abo-Talib N (2002) Stability-indicating methods for the determination of doxazosin mezylate and celecoxib. J Pharm Biomed Anal 27(5):779–793

    Article  PubMed  CAS  Google Scholar 

  18. Matousová O, Peterková M, Kakác B., (1983) Densitometric determination of prazosin in plasma, Cesk Farm. 32(7):245–246

    Google Scholar 

  19. Patel DB, Patel NJ (2010) Validated RP-HPLC and TLC methods for simultaneous estimation of tamsulosin hydrochloride and finasteride in combined dosage forms. Acta Pharmaceutica 60(2):197–205

    Google Scholar 

  20. Dhanya B, Suganthi A, Sen AK, Sahoo U, Seth AK (2011) Determination of Doxazosin Mesylate in Tablets by RP-HPLC. Indian J Pharm Sci 73(1):120–122

    Google Scholar 

  21. Bakshi M, Ojha T, Singh S (2004) Validated specific HPLC methods for determination of prazosin, terazosin and doxazosin in the presence of degradation products formed under ICH-recommended stress conditions. J Pharm Biomed Anal 34(1):19–26

    Article  PubMed  CAS  Google Scholar 

  22. Chen Z, et al. (2007) Optimum Study of the Enantioseparation of Doxazosin Intermediate Enantiomers [J]. Fine Chemicals, 2007. 1

  23. Dokladalova J et al (1981) Determination of polythiazide and prazosin in human plasma by high-performance liquid chromatography. J Chromatogr B: Biomed Sci Appl 224(1):33–41

    Article  CAS  Google Scholar 

  24. Farooqui MA, Satish AS, Manzoor A, Sridhar BK (2010) RP-HPLCmethodfor estimation of prazosin hydrochloride in pharmaceutical dosage form. Int J Chem Sci 8(3):1956–1964

    Google Scholar 

  25. Fouda HG, Twomey TM, Schneider RP (1988) Liquid chromatographic analysis of doxazosin in human serum with manual and robotic sample preparation. J Chromatogr Sci 26(11):570–573

    Article  PubMed  CAS  Google Scholar 

  26. Kim YJ et al (2006) High–performance liquid chromatographic determination of doxazosin in human plasma for bioequivalence study of controlled release doxazosin tablets. Biomed Chromatogr 20(11):1172–1177

    Article  PubMed  CAS  Google Scholar 

  27. Nageswara Rao R, Nagaraju D, Narasa Raju A (2006) Enantiomeric resolution of doxazosin mesylate and its process-related substances on polysaccharide chiral stationary phases. J Pharm Biomed Anal 41(3):766–773

    Article  PubMed  CAS  Google Scholar 

  28. Niazy E, El-Sayed Y, Khidr S (1995) Analysis of prazosin in plasma by high-performance liquid chromatography using fluorescence detection. J Liq Chromatogr Relat Technol 18(5):977–987

    Article  CAS  Google Scholar 

  29. Sripalakit P, Nermhom P, Saraphanchotiwitthaya A (2005) Improvement of Doxazosin Determination in Human Plasma Using High-Performance Liquid Chromatography with Fluorescence Detection. J Chromatogr Sci 43(2):63–66

    Google Scholar 

  30. Rathinavelu A, Malave A (1995) High-performance liquid chromatography using electrochemical detection for the determination of prazosin in biological samples. J Chromatogr B: Biomed Sci Appl 670(1):177–182

    Article  CAS  Google Scholar 

  31. Shabana N, Najma S, Saeed A, Nighat S (2010) Simultaneous determination of prazosin and calcium channel blockers in raw materials, pharmaceutical formulations and human serum by RP-HPLC. Int J Pharm Res Dev – Online, 2(9):6–17

    Google Scholar 

  32. Erceg M, Cindric M, Pozaic Frketic L, Vertzoni M, Cetina-Cizmek B, Reppas C (2010) A LC-MS-MS method for determination of low doxazosin concentrations in plasma after oral administration to dogs. J Chromatogr Sci 48(2):114–119

    Google Scholar 

  33. Yee YG, Rubin PC, Meffin P (1979) Prazosin determination by high-pressure liquid chromatography using flourescence detection. J Chromatogr A 172(1):313–318

    Article  CAS  Google Scholar 

  34. Branch SK (2005) Guidelines from the international conference on harmonisation (ICH). J Pharm Biomed Anal 38(5):798–805

    Article  PubMed  CAS  Google Scholar 

  35. Molecular Operating Environment (MOE) (2012) S. 1010 Sherbooke St. West, Editor 2012: Inc., C.C.G., Montreal, QC, Canada, H3A 2R7

  36. Younkin JM, Smith LJ, Compton RN (1976) Semi-empirical calculations of -electron affinities for some conjugated organic molecules. Theor Chem Acc: Theory Comput Model (Theor Chim Acta) 41(2):157–176

    Article  CAS  Google Scholar 

  37. Mittal KL (1979) Solution chemistry of surfactants, vol 1. Plenum Press, New York

    Book  Google Scholar 

  38. De S, Girigoswami A, Mandal S (2002) Enhanced fluorescence of triphenylmethane dyes in aqueous surfactant solutions at supramicellar concentrations—effect of added electrolyte. Spectrochim Acta A Mol Biomol Spectrosc 58(12):2547–2555

    Article  PubMed  Google Scholar 

  39. Hinze WL et al (1984) Micellar enhanced analytical fluorimetry. TrAC Trends in Anal Chem 3(8):193–199

    Article  CAS  Google Scholar 

  40. El-Sherbiny DT (2006) Spectrofluorometric determination of citalopram in pharmaceutical preparations and spiked human plasma using organized media. J AOAC Int 89(5):1288–1295

    PubMed  CAS  Google Scholar 

  41. Berthod A, Borgerding MF, Hinze WL (1991) Investigation of the causes of reduced efficiency in micellar liquid chromatography. J Chromatogr A 556(1):263–275

    CAS  Google Scholar 

  42. Miola L et al (1983) Reactivity and equilibriums in ionic micellar solution. Part 8. Models for specific counterion effects on the incorporation of charged amphiphilic substrates into like-charged ionic micelles. J Phys Chem 87(22):4417–4425

    Article  CAS  Google Scholar 

  43. Tran CD, Van Fleet TA (1988) Micellar induced simultaneous enhancement of fluorescence and thermal lensing. Anal Chem 60(22):2478–2482

    Article  CAS  Google Scholar 

  44. Almgren M, Grieser F, Thomas JK (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101(2):279–291

    Article  CAS  Google Scholar 

  45. AziziM, Gaur R, Gan J, Hansal P, HarperK, Mannan R, PanchalA, Patel K, PatelM, Patel N, Rana J (2009) prazosin tablets, in British pharmacopeia 2009: Queen’s Road, Teddington, Middlesex TW11 0LY. p. 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh Ahmed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 219 kb)

High Resolution Image (TIFF 1907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, N.A., Ahmed, S. & El Zohny, S.A. Rapid and Sensitive Online Determination of Some Selective α1-Blockers by Flow Injection Analysis with Micelle-Enhanced Fluorescence Detection. J Fluoresc 23, 1301–1311 (2013). https://doi.org/10.1007/s10895-013-1264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1264-0

Keywords

Navigation