Skip to main content
Log in

Luminescent ‘On-Off’ CdSe/ZnS Quantum Dot Chemodosimeter for Hydroxide Based on Photoinduced Electron Transfer from a Carboxylate Moiety

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A CdSe-ZnS quantum dot (QD) has been surface functionalised by a place exchange reaction with p-mercaptomethyl benzoate synthesized by a three-step procedure. The resulting lumophore-spacer-receptor QD-conjugate was characterized by IR, UV-visible and fluorescence spectroscopy. The emission profile of the QD reveals a narrow emission peak centred at 542 nm. Addition of hydroxide to the solution containing the QD-conjugate results in quenching of the original fluorescence, which is attributed to a photoinduced electron transfer reaction from the electron-rich benzoate moiety to the QD valence band. This is the first reported example of fluorescent quenching of a CdSe-ZnS QD luminescence by an aryl carboxylate moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41:4067–4085

    Article  PubMed  CAS  Google Scholar 

  2. Yildiz I, Tomasulo M, Raymo FM (2008) Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots. J Mater Chem 18:5577–5584

    Article  CAS  Google Scholar 

  3. Raymo FM, Yildiz I (2007) Luminescent chemosensors based on semiconductor quantum dots. Phys Chem Chem Phys 9:2036–2043

    Article  PubMed  CAS  Google Scholar 

  4. Callan JF, de Silva AP, Mulrooney RC, McCaughan B (2007) Luminescent sensing with quantum dots. J Incl Phenom Macro Chem 58:257–262

    Article  CAS  Google Scholar 

  5. Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trends Anal Chem 25:207–218

    Article  Google Scholar 

  6. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  7. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  8. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  9. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  10. Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414

    Article  CAS  Google Scholar 

  11. Freeman R, Finder T, Bahshi L, Willner I (2009) β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett 9:2073–2076

    Article  PubMed  CAS  Google Scholar 

  12. Chen C-Y, Cheng C-T, Lai C-W, Wu P-W, Wu K-C, Chou P-T, Chou, Y-H, Chiu H-T (2006) Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem Comm, 263–265

  13. Tomasulo M, Yildiz I, Raymo FM (2006) pH-sensitive quantum dots. J Phys Chem B 110:3853–3855

    Article  PubMed  CAS  Google Scholar 

  14. Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22:10284–10290

    Article  PubMed  CAS  Google Scholar 

  15. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater, 2:630–638

  16. Impellizzeri S, McCaughan B, Callan JF, Raymo FM (2012) Photoinduced enhancement in the luminescence of hydrophilic quantum dots coated with photocleavable ligands. J Am Chem Soc 134:2276–2283

    Article  PubMed  CAS  Google Scholar 

  17. Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 2:630–638

    Article  Google Scholar 

  18. Kaur N, Singh N, McCaughan B, Callan JF (2010) AND molecular logic using semiconductor quantum dots. Sensor Actuator B-Chem 144:88–91

    Article  CAS  Google Scholar 

  19. Mulronney RC, Singh N, Kaur N, Callan JF (2009) An “off-on” sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chem Commun, 686–688.

  20. Callan JF, Mulrooney RC, Kamila S, McCaughan B (2008) Anion sensing with luminescent quantum dots—a modular approach based on the photoinduced electron transfer (PET) mechanism. J Fluoresc 18:527–532

    Article  PubMed  CAS  Google Scholar 

  21. Kavarnos GJ (1993) Fundamentals of photoinduced electron transfer. VCH-Wiley, New York USA

    Google Scholar 

  22. de Silva AP, Moody TS, Wright G (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134:2385–2393

    Article  PubMed  Google Scholar 

  23. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake KRAS (1992) Molecular fluorescent signalling with ‘fluor-spacer-receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem Soc Rev 2:187–195

    Article  Google Scholar 

  24. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  25. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JTR, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515

    Article  PubMed  Google Scholar 

  26. Impellizzeri S, Monaco S, Yildiz I, Amelia M, Credi A, Raymo FM (2010) Structural implications on the electrochemical and spectroscopic signature of CdSe-ZnS core-shell quantum dots. J Phys Chem C 114:7007–7013

    Article  CAS  Google Scholar 

  27. Amelia M, Avellini T, Monaco S, Impellizzeri S, Yildiz I, Raymo FM, Credi A (2011) Redox properties of CdSe and CdSe-ZnS quantum dots in solution. Pure Appl Chem 83:1–8. The reduction potential originally referenced versus Ag/AgCl has been corrected versus SCE by adding 0.044 V

    Article  CAS  Google Scholar 

  28. Querner C, Reiss P, Sadki S, Zagorska M, Pron A (2005) Phys Chem Chem Phys 7:3204–3209

    Article  PubMed  CAS  Google Scholar 

  29. de Silva AP, de Silva SA, Dissanayake AS, Sandanayake KRAS (1989) Compartmental fluorescent pH indicators with nearly complete predictability of indicator parameters; molecular engineering of pH sensors. J Chem Soc Chem Commun, 1054–1056

  30. Koh JT, Delaude L, Breslow R (1994) Geometric control of a pyridoxal-catalyzed aldol condensation. J Am Chem Soc 116:11234–11240

    Article  CAS  Google Scholar 

  31. Antonello S, Maran F (1999) The role and relevance of the transfer coefficient α in the study of dissociative electron transfers: concepts and examples from the electroreduction of perbenzoates. J Am Chem Soc 121:9668–9676

    Article  CAS  Google Scholar 

  32. Yildiz I, Ray S, Benelli T, Raymo FM (2008) Dithiolane ligands for semiconductor quantum dots. J Mater Chem 18:3940–3947

    Article  CAS  Google Scholar 

  33. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129:482–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the University of Malta, Acadia University, and European Cooperation in Science and Technology (COST CM1005). Prof. Robert M. Borg is thanked for assistance with the acquisition of the NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Magri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauci, L.A., Kelland, L.G. & Magri, D.C. Luminescent ‘On-Off’ CdSe/ZnS Quantum Dot Chemodosimeter for Hydroxide Based on Photoinduced Electron Transfer from a Carboxylate Moiety. J Fluoresc 23, 793–798 (2013). https://doi.org/10.1007/s10895-013-1212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1212-z

Keywords

Navigation