Skip to main content
Log in

Absorption and Fluorescence Emission Attributes of a Fluorescent dye: 2,3,5,6-Tetracyano-p-Hydroquinone

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four cyano groups have been substituted on the aromatic ring of p-hydroquinone (2,3,5,6-tetracyanohydroquinone) in order to study the enhanced photoacidity of this molecule. The acid-base equilibria have been studied using absorption (for ground state pKa) and fluorescence (excited state pKa) spectra. Three distinct species (neutral, anionic and dianionic forms) were observed in the ground state and only two species (anionic and dianionic forms) were found in the excited state when studied at different pH/Ho in water. Absorption and emission characteristics were studied in various organic solvents, including protic and aprotic solvents. Deprotonation was also investigated using binary mixtures. It has been revealed that absorption and emission spectra are considerably changed with change in media. Proton transfer to the solvent has been observed in various solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pines D, Pines E (2007) Solvent assisted photoacidity. In: Hydrogen-transfer reactions. Wiley-VCH Verlag GmbH & Co, pp 377–415. doi:10.1002/9783527611546.ch12

  2. Shizuka H, Tobita S (2006) Proton transfer reactions in the excited states. In: Ramamurthy V, Schanze KS (eds) Organic photochemistry and photophysics. CRC Press Taylor & Francis Group, UK, pp 37–74

    Google Scholar 

  3. Lukeman M, Wan P (2003) Photochemistry of hydroxyarenes. In: Horspool W, Lenci F (eds) CRC handbook of organic photochemistry and photobiology. CRC Press LLC, UK, pp 39(31)–39(19)

    Google Scholar 

  4. Tolbert LM, Solntsev KM (2002) Excited-state proton transfer: From constrained systems to “super” photoacids to superfast proton transfer. Acc Chem Res 35(1):19–27

    Article  PubMed  CAS  Google Scholar 

  5. Knochenmuss R, Solntsev KM, Tolbert LM (2001) Molecular beam studies of the “super” photoacid 5-cyano-2-naphthol in solvent clusters. J Phys Chem A 105(26):6393–6401

    Article  CAS  Google Scholar 

  6. Huppert D, Tolbert LM, Linares-Samaniego S (1997) Ultrafast excited-state proton transfer from cyano-substituted 2-naphthols. J Phys Chem A 101(25):4602–4605

    Article  CAS  Google Scholar 

  7. Carmeli I, Huppert D, Tolbert LM, Haubrich JE (1996) Ultrafast excited-state proton transfer from dicyano-naphthol. Chem Phys Lett 260(1–2):109–114

    Article  CAS  Google Scholar 

  8. Jung G, Gerharz S, Schmitt A (2009) Solvent-dependent steady-state fluorescence spectroscopy for searching ESPT-dyes: Solvatochromism of HPTS revisited. Phys Chem Chem Phys 11(9):1416–1426

    Article  PubMed  CAS  Google Scholar 

  9. Leiderman P, Genosar L, Huppert D (2005) Excited-state proton transfer: Indication of three steps in the dissociation and recombination process. J Phys Chem A 109(27):5965–5977

    Article  PubMed  CAS  Google Scholar 

  10. Genosar L, Cohen B, Huppert D (2000) Ultrafast direct photoacid-base reaction. J Phys Chem A 104(29):6689–6698

    Article  CAS  Google Scholar 

  11. Pines E, Huppert D, Agmon N (1988) Geminate recombination in excited-state proton transfer reactions: Numerical solution of the Debye-Smoluchowski equation with backreaction and comparison with experimental results. J Chem Phys 88(9):5620–5630

    Article  CAS  Google Scholar 

  12. Pines E, Huppert D (1986) Observation of geminate recombination in excited state proton transfer. J Chem Phys 84(6):3576–3577

    Article  CAS  Google Scholar 

  13. Lewis FD, Sinks LE, Weigel W, Sajimon MC, Crompton EM (2005) Ultrafast proton transfer dynamics of hydroxystilbene photoacids. J Phys Chem A 109(11):2443–2451

    Article  PubMed  CAS  Google Scholar 

  14. Crompton EM, Lewis FD (2004) Positional effects of the hydroxy subtituent on the photochemical and photophysical behavior of 3- and 4-hydroxystilbene. Photochem Photobiol Sci 3(7):660–668

    Article  PubMed  CAS  Google Scholar 

  15. Lewis FD, Crompton EM (2003) Hydroxystilbene isomer-specific photoisomerization versus proton transfer. J Am Chem Soc 125(14):4044–4045

    Article  PubMed  CAS  Google Scholar 

  16. Kaneko S, Yotoriyama S, Koda H, Tobita S (2009) Excited-state proton transfer to solvent from phenol and cyanophenols in water. J Phys Chem A 113(13):3021–3028

    Article  PubMed  CAS  Google Scholar 

  17. Clower C, Solntsev KM, Kowalik J, Tolbert LM, Huppert D (2002) Photochemistry of “super” photoacids. 3: Excited-state proton transfer from perfluroalkylsulfonyl-substitutued 2-naphthols. J Phys Chem A 106(13):3114–3122

    Article  CAS  Google Scholar 

  18. Tolbert LM, Haubrich JE (1994) Photoexcited proton transfer from enhanced photoacids. J Am Chem Soc 116(23):10593–10600

    Article  CAS  Google Scholar 

  19. Solntsev KM, Huppert D, Agmon N, Tolbert LM (2000) Photochemistry of “Super” Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Mixtures. J Phys Chem A 104(19):4658–4669

    Article  CAS  Google Scholar 

  20. Schulman SG, Vincent WR, Underberg WJM (1981) Acidity of cyanophenols in the S1 and T1 states. The influence of substituent orientation. J Phys Chem 85(26):4068–4071

    Article  CAS  Google Scholar 

  21. Szczepanik B, Styrcz S (2011) Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions. Spectrochim Acta A 79(3):451–455

    Article  CAS  Google Scholar 

  22. Tran-Thi TH, Gustavsson T, Prayer C, Pommeret S, Hynes JT (2000) Primary ultrafast events preceding the photoinduced proton transfer from pyranine to water. Chem Phys Lett 329(5–6):421–430

    Article  CAS  Google Scholar 

  23. Granucci G, Hynes JT, Millié P, Tran-Thi TH (2000) A theoretical investigation of excited-state acidity of phenol and cyanophenols. J Am Chem Soc 122(49):12243–12253

    Article  CAS  Google Scholar 

  24. Tran-Thi TH, Prayer C, Millié P, Uznanski P, Hynes JT (2002) Substituent and solvent effects on the nature of the transitions of pyrenol and pyranine. Identification of an intermediate in the excited-state proton-transfer reaction. J Phys Chem A 106(10):2244–2255. doi:10.1021/jp0125606

    Article  CAS  Google Scholar 

  25. Hynes JT, Tran-Thi T-H, Granucci G (2002) Intermolecular photochemical proton transfer in solution: new insights and perspectives. J Photochem Photobiol A 154(1):3–11

    Article  CAS  Google Scholar 

  26. Wang H, Wang X, Li X, Zhang C (2006) Theoretical studies on fluorescence of phenol and 1-naphthol in both acid and alkali solutions. J Mol Struct 770(1–3):107–110

    CAS  Google Scholar 

  27. Genosar L, Leiderman P, Koifman N, Huppert D (2004) Effect of pressure on proton transfer rate from a photoacid to a solvent, 3. 2-naphthol and 2-naphthol monosulfonate derivatives in water. J Phys Chem A 108(10):1779–1789

    Article  CAS  Google Scholar 

  28. Magnes BZ, Strashnikova NV, Pines E (1999) Evidence for 1La, 1Lb dual state emission in 1-naphthol and 1-methoxynaphthalene fluorescence in liquid solutions. Isr J Chem 39(3–4):361–373

    CAS  Google Scholar 

  29. Knochenmuss R, Fischer I, Lührs D, Lin Q (1999) Intermolecular excited-state proton transfer in clusters of 1-naphthol with water and with ammonia. Isr J Chem 39(3–4):221–230

    CAS  Google Scholar 

  30. Losi A, Viappiani C (1998) Reaction volume and rate constants for the excited-state proton transfer in aqueous solutions of naphthols. Chem Phys Lett 289(5–6):500–506

    Article  CAS  Google Scholar 

  31. Kim SK, Breen JJ, Willberg DM, Peng LW, Heikal A, Syage JA, Zewail AH (1995) Solvation ultrafast dynamics of reactions. 8. Acid-base reactions in finite-sized clusters of naphthol in ammonia, water, and piperidine. J Phys Chem 99(19):7421–7435

    Article  CAS  Google Scholar 

  32. Pines E, Fleming GR (1994) Self quenching of 1-naphthol. Connection between time-resolved and steady-state measurements. Chem Phys 183(2–3):393–402

    Article  CAS  Google Scholar 

  33. Droz T, Knochenmuss R, Leutwyler S (1990) Excited-state proton transfer in gas-phase clusters: 2-Naphthol · (NH3)n. J Chem Phys 93(7):4520–4532

    Article  CAS  Google Scholar 

  34. Harris CM, Selinger BK (1980) Proton-induced fluorescence quenching of 2-naphthol. J Phys Chem 84(8):891–898

    Article  CAS  Google Scholar 

  35. Weller A (1952) Fluorescence shifts of naphthols. Z Elektrochem 56:662–668

    CAS  Google Scholar 

  36. Tolbert LM, Harvey LC, Lum RC (1993) Excited-state proton transfer from hydroxyalkylnaphthols. J Phys Chem 97(50):13335–13340

    Article  CAS  Google Scholar 

  37. Agmon N (2005) Elementary steps in excited-state proton transfer. J Phys Chem A 109(1):13–35

    Article  PubMed  CAS  Google Scholar 

  38. Agmon N, Rettig W, Groth C (2002) Electronic determinants of photoacidity in cyanonaphthols. J Am Chem Soc 124(6):1089–1096. doi:10.1021/ja003875m

    Article  PubMed  CAS  Google Scholar 

  39. Jacquemine D, Perpète EA, Ciofini I, Adamo C (2008) Fast and reliable theoretical determination of pKa * for photoacids. J Phys Chem A 112(5):794–796

    Article  Google Scholar 

  40. Abraham I, Joshi R, Pardasani P, Pardasani RT (2011) Recent advances in 1,4-benzoquinone chemistry. J Braz Chem Soc 22:385–421

    Article  CAS  Google Scholar 

  41. Elhabiri M, Siri O, Sornosa-Tent A, Albrecht-Gary A-M, Braunstein P (2004) Acid–base sensors based on novel Quinone-type dyes. Chem Eur J 10(1):134–141. doi:10.1002/chem.200305206

    Article  PubMed  CAS  Google Scholar 

  42. Görner H, von Sonntag C (2008) Photoprocesses of chloro-substituted p-Benzoquinones. J Phys Chem A 112(41):10257–10263. doi:10.1021/jp805046p

    Article  PubMed  Google Scholar 

  43. Görner H (2007) Oxygen uptake upon photolysis of 1,4-benzoquinones and 1,4-naphthoquinones in air-saturated aqueous solution in the presence of formate, amines, ascorbic acid, and alcohols. J Phys Chem A 111(15):2814–2819. doi:10.1021/jp0683061

    Article  PubMed  Google Scholar 

  44. Görner H (2004) Photoreactions of p-benzo-, p-naphtho- and p-anthraquinones with ascorbic acid. Photochem Photobiol Sci 3(10):933–938

    Article  PubMed  Google Scholar 

  45. Sunkel J, Staude H (1969) Der Einfluß von Dissoziation und Substitution auf die physikalischen Eigenschaften von Dioxybenzolen. 2. Mitteilung: Elektronenspektren. Ber Bunsen-Ges Phys Chem 73(2):203–209. doi:10.1002/bbpc.19690730220

    CAS  Google Scholar 

  46. Sunkel J, Staude H (1968) Der Einfluß von Dissoziation und Substitution auf die physikalischen Eigenschaften von Dioxybenzolen 1. Mitteilung: Dissoziationskonstanten, Dissoziationsstufen, Redoxpotentiale und Dipolmomente. Ber Bunsen-Ges Phys Chem 72(4):567–573. doi:10.1002/bbpc.19680720416

    CAS  Google Scholar 

  47. Brown RG, Porter G (1977) Effect of pH on the emission and absorption characteristics of 2,3-dicyano-p-hydroquinone. J Chem Soc Faraday Trans 1(73):1281–1285

    Google Scholar 

  48. Kurtz I, Balaban RS (1985) Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile. A method for determining intracellular pH in cultured cells. Biophys J 48(3):499–508

    Article  PubMed  CAS  Google Scholar 

  49. Valet G, Raffael A, Moroder L (1981) Fast intracellular pH determination in single cells by flow-cytometry. Naturwissenschaften 68(5):265–266

    Article  PubMed  CAS  Google Scholar 

  50. Vazquez C, Calabrese JC, Dixon DA, Miller JS (1993) Cyanil. Synthesis and characterization of the strongest isolated electron acceptor and its reduced forms. J Org Chem 58(1):65–81. doi:10.1021/jo00053a017

    Article  CAS  Google Scholar 

  51. Vogel AI, Svehla G (1979) Vogel’s textbook of macro and semimicro qualitative inorganic analysis. Longman, London

    Google Scholar 

  52. Paul MA, Long FA (1957) Ho and related indicator acidity functions. Chem Rev 57(1):1–45

    Article  CAS  Google Scholar 

  53. Perkampus H-H (1992) UV-VIS spectroscopy and its applications. Springer, UK

    Book  Google Scholar 

  54. Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:187–214

    CAS  Google Scholar 

  55. Förster T (1949) Fluoreszenzspektrum und Wasserstoffionen-konzentration. Naturwissenschaften 36(6):186–187

    Article  Google Scholar 

  56. Grabowski ZR, Rubaszewska W (1977) Generalised Förster cycle. Thermodynamic and extrathermodynamic relationships between proton transfer, electron transfer and electronic excitation. J Chem Soc Faraday Trans 1(73):11–28

    Google Scholar 

  57. Van Stam J, Löfroth JE (1986) The protolysis of singlet excited β-naphtol: a two-day laboratory experiment to introduce photophysics. J Chem Educ 63(2):181–184

    Article  Google Scholar 

  58. Avigal I, Feitelson J, Ottolenghi M (1969) Dissociation constants of excited phenols from fluorescence quenching data. J Chem Phys 50(6):2614–2617

    Article  CAS  Google Scholar 

  59. Bishop CA, Tong LKJ (1965) Equilibria of substituted semiquinones at High pH. J Am Chem Soc 87(3):501–505. doi:10.1021/ja01081a018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Stephan Landgraf, Dr. Arnulf Rosspeintner, Dr. Gonzalo Angulo and Prof. Dr. Patrice Jacques for their guidance and helpful discussions. The author acknowledges financial support from the Higher Education Commission Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zahid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 975 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahid, M., Grampp, G., Mansha, A. et al. Absorption and Fluorescence Emission Attributes of a Fluorescent dye: 2,3,5,6-Tetracyano-p-Hydroquinone. J Fluoresc 23, 829–837 (2013). https://doi.org/10.1007/s10895-013-1197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1197-7

Keywords

Navigation