Skip to main content

Advertisement

Log in

Bis-Benzimidazolyl Diamide Based Fluorescent Probe for Copper(II): Synthesis, Structural and Fluorescence Studies

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescent probe based on a bis-benzimidazole diamide N 2,N 2′-bis[(1-ethyl-benzimidazol-2-yl)methyl]biphenyl-2,2′-dicarboxamide ligand L 1 with a biphenyl spacer group and a Copper(II) trinuclear metallacycle has been synthesized and characterized by X-ray single crystallography, elemental and spectral (FT-IR, 1H & 13C NMR, UV-Visible) analysis. The fluorescence spectra of L 1 in MeOH show an emission band centered at 300 nm. This band arises due to benzimidazolyl moiety in the ligating system. The diamide L 1 in the presence of Cu2+ show the simultaneous ‘quenching’ of (300 nm) and ‘enhancement’ of (375 nm) emission band. Similar fluorescence behavior was found in water–methanol mixture (9:1). The new emission band at 375 nm is attributed to intra ligand π–π* transition of the biphenyl moiety. L 1 exhibited high selectivity and sensitivity towards Cu2+ in both the medium over other common metal ions like Ni2+, Co2+, Mn2+, Mg2+, Zn2+, Pb2+ and Hg2+. The binding constant with Cu2+ was calculated by the Benesi-Hildebrand equation. Selective “off-on-off” behavior of L 1 in methanol has also been studied. The fluorescent intensity of 375 nm bands in L 1 enhances (turns-on) upon addition of Cu2+ and quenches (turn-off) upon addition of Na2-EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lovstad RA (2004) A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. BioMetals 17:111–113

    Article  PubMed  CAS  Google Scholar 

  2. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  PubMed  CAS  Google Scholar 

  3. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 106:1995–2044

    Article  PubMed  CAS  Google Scholar 

  4. Jung HS, Park M, Han DY, Kim E, Lee C, Ham S, Kim JS (2009) Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org Lett 11:3378–3381

    Article  PubMed  CAS  Google Scholar 

  5. Zheng Y, Gattas-Asfura KM, Konka V, Leblanc RM (2002) A dansylated peptide for the selective detection of copper ions. Chem Commun 2350–2351

  6. Jung et al (2009) Coumarin-derived Cu2+ -selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    Article  PubMed  CAS  Google Scholar 

  7. Weng YQ, Yue F, Zhong YR, Ye BH (2007) A Copper(II) ion-selective on-off-type fluoroionophore based on zinc porphyrin–dipyridylamino. Inorg Chem 46:7749–7755

    Article  PubMed  CAS  Google Scholar 

  8. Xu Z, Yoon J, Spring DR (2010) Fluorescence chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  PubMed  CAS  Google Scholar 

  9. Callan JF, De Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  10. Li J et al (2011) A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+. J Fluoresc 21:2005–2013

    Article  PubMed  CAS  Google Scholar 

  11. Khatua S, Choi SH, Lee J, Huh JO, Do Y, Churchill DJ (2009) Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg Chem 48:1799–1801

    Article  PubMed  CAS  Google Scholar 

  12. Royzen M, Dai Z, Canary JW (2005) Ratometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  PubMed  CAS  Google Scholar 

  13. Wolf C, Mei XF, Rokadia HK (2004) Selective detection of Fe(III) ions in aqueous solution with a 1,8-diacridylnaphthalene-derived fluorosensor. Tetrahedron Lett 45:7867–7871

    Article  CAS  Google Scholar 

  14. Ballesteros E et al (2009) A new selective chromogenic and turn-on fluorogenic probe for copper(II) in water–acetonitrile 1:1 solution. Org Lett 11:1269–1272

    Article  PubMed  CAS  Google Scholar 

  15. Shin DH, Ko YG, Choi US, Kim WN (2006) Bowing effect with fluorescence: a unique chemosensor for the silver ion. Ind Eng Chem Res 45:656–662

    Article  CAS  Google Scholar 

  16. Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192

    Article  CAS  Google Scholar 

  17. De Silva SA, Zavaleta AD, Baron E (1997) A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Lett 38:2237–2240

    Article  Google Scholar 

  18. De Silva SA et al (2005) A fluorescent “off-on-off” proton switch derived from natural products and further studies of first-generation fluorescent photoinduced electron transfer (PET) systems. J Mater Chem 15:2791–2795

    Article  Google Scholar 

  19. De Silva SA et al (2002) A fluorescent “off-on-off” proton switch with an overriding ‘enable-disable’ sodium ion switch. Chem Commun 1360–1361

  20. Callan JF, De Silva AP, McClenaghanb ND (2004) Switching between molecular switch types by module rearrangement: Ca2+-enabled, H+-driven ‘off-on-off’, H+-driven YES and PASS 0 as well as H+, Ca2+-driven AND logic operations. Chem Commun 2048–2049

  21. Goswami P, Das DK (2011) Significant effect of surfactant micelles on pH dependent fluorescent off-on-off behavior of Salicylaldehyde-2,4-Dinitrophenylhydrazone. J Luminescence 131:760–763

    Article  CAS  Google Scholar 

  22. Bandyopadhyay P, Ghosh AK (2009) pH controlled “off-on-off” switch based on Cu2+-mediated pyrene fluorescence in a PAA–SDS micelle aggregated supramolecular system. J Phys Chem B 113:13462–13464

    Article  PubMed  CAS  Google Scholar 

  23. Pais VF et al (2011) Off-on-off fluorescence switch with T-Latch function. Org Lett 13:5572–5575

    Article  PubMed  CAS  Google Scholar 

  24. Fabbrizzi L, Gatti F, Pallavicini P, Parodi L (1998) An “off-on-off” fluorescent sensor for pH based on ligand–proton and ligand–metal–proton interactions. New J Chem 1403–1407

  25. Zhang HG et al (2011) Off-on-off luminescent switching of a dye containing imidazo[4, 5-f][1, 10]phenanthroline. Chin Chem Lett 22:647–650

    Article  CAS  Google Scholar 

  26. Ravikumar I, Ghosh P (2011) Zn(II) and PPi selective fluorescence off-on-off functionality of a chemosensor in physiological conditions. Inorg Chem 50:4229–4231

    Article  PubMed  CAS  Google Scholar 

  27. Pandey R et al (2011) Fluorescent zinc(II) complex exhibiting “on-off-on” switching toward Cu2+ and Ag+ ions. Inorg Chem 50:3189–3197

    Article  PubMed  CAS  Google Scholar 

  28. Barceloux DG, Barceloux D (1999) Copper. J Toxicol Clin Toxicol 37:217–230

    Article  PubMed  CAS  Google Scholar 

  29. Zhang XB, Peng J, He CL, Shen GL, Yu RQ (2006) A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Anal Chim Acta 567:189–195

    Article  CAS  Google Scholar 

  30. Sarkar B (1981) In Metal ions in biological systems. Siegel H, Siegel A (eds.) Marcel Dekker, New York 12:233

  31. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B 4:341–394

    Article  CAS  Google Scholar 

  32. Tak WT, Yoon SC (2001) Clinical significance of blood level of zinc and copper in chronic renal failure patients. KSN 20:863–871

    Google Scholar 

  33. Zheng Y et al (2003) Development of fluorescent film sensors for the detection of divalent copper. J Am Chem Soc 125:2680–2686

    Article  PubMed  CAS  Google Scholar 

  34. Zheng Y et al (2001) A new fluorescent chemosensor for copper ions based on tripeptide Glycyl–Histidyl–Lysine (GHK). Org Lett 3:3277–3280

    Article  PubMed  CAS  Google Scholar 

  35. Zheng Y et al (2003) Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel. J Phys Chem B 107:483–488

    Article  CAS  Google Scholar 

  36. Goswami S, Chakrabarty R (2009) Fluorescence sensing of Cu2+ within a pseudo 18-crown-6 cavity. Tetrahedron Lett 50:5910–5913

    Article  CAS  Google Scholar 

  37. Liu Z, Yang Z, Li T, Wang B, Li Y, Qin D, Wang M, Yan M (2011) An effective Cu(II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymer framework. Dalton Trans 40:9370–9373

    Article  PubMed  CAS  Google Scholar 

  38. Costero AM, Gil S, Sanchis J, Peransi S, Sanz V, Williams JAG (2004) Conformationally regulated fluorescent sensors. Study of the selectivity in Zn2+ versus Cd2+ sensing. Tetrahedron 60:6327–6334

    Article  CAS  Google Scholar 

  39. Cescon LA, Day AR (1962) Preparation of some benzimidazolylamino acids. Reactions of amino acids with o-phenylenediamines. J Org Chem 27:581–586

    Article  CAS  Google Scholar 

  40. Mahiya K, Mathur P (2013) Morphology dependent oxidation of aromatic alcohols by new symmetrical copper (II) metallatriangles formed by self-assembly of a shared bis -benzimidazolyl diamide ligand. Inorganica chimica Acta. doi:10.1016/j.ica.2012.12.037

  41. Barnes DJ, Chapman RL, Vagg RS, Watton EC (1978) Synthesis of novel bis(amides) by means of triphenyl phosphite intermediates. J Chem Eng Data 23:349–350

    Article  CAS  Google Scholar 

  42. Sheldrick GM (1997) SHELXS97 and SHELXL97; program for crystal structure solution and refinement. University of Gottingen, Germany

    Google Scholar 

  43. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  44. Kumar A, Sinha HK, Dogra SK (1989) Electronic spectrum of bibenzimidazole homologue: effects of solvents and acid concentration. Can J Chem 67:1200–1205

    Article  CAS  Google Scholar 

  45. Huang HW et al (1996) Fluorescence study on intermolecular interactions between mesogenic biphenyl moieties of a thermotropic liquid-crystalline polyester (PB-10). Macromolecules 29:3485–3490

    Article  CAS  Google Scholar 

  46. Guo F, Xu J, Zhang X, Zhu B (2010) Hydrothermal synthesis, crystal structures and photoluminescent properties of four cadmium(II) coordination polymers derived from diphenic acid and auxiliary ligands. Inorg Chim Acta 363:3790–3797

    Article  CAS  Google Scholar 

  47. Zhang LY et al (2003) Helical ribbons of Cadmium(II) and Zinc(II) dicarboxylates with bipyridyl-like chelates–syntheses, crystal structures and photoluminescence. Eur J Inorg Chem 2003:2965–2971

    Article  Google Scholar 

  48. Chen W et al (2003) Photoluminescent metal–organic polymer constructed from trimetallic clusters and mixed carboxylates. Inorg Chem 42:944–946

    Article  PubMed  CAS  Google Scholar 

  49. Yam VWW, Lo KKW (1999) Luminescent polynuclear d10 metal complexes. Chem Soc Rev 28:323–334

    Article  CAS  Google Scholar 

  50. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  51. Barra M, Bohne C, Scaiano JC (1990) Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for triplet-state exit. J Am Chem Soc 112:8075–8079

    Article  CAS  Google Scholar 

  52. Xie G et al. (2012) A highly selective fluorescent and colorimetric chemosensor for ZnII and its application in cell imaging. Eur J Inorg Chem 327

  53. Ghosh K, Sen T, Patra A (2010) Binding induced destruction of an excimer in anthracene-linked benzimidazole diamide: a case toward the selective detection of organic sulfonic acids and metal ions. New J Chem 34:1387–1393

    Article  CAS  Google Scholar 

  54. Huo F-J, Su Y-Q, Su J, Yang Y-T, Yin C-X, Chao J-B (2010) Chromene “lock”, thiol “key”, and Mercury(II) ion “hand”: a single molecular machine recognition system. Org Lett 12:4756–4759

    Article  PubMed  CAS  Google Scholar 

  55. Monzani E et al (1998) Tyrosinase models. synthesis, structure, catechol oxidase activity, and phenol monooxygenase activity of a dinuclear copper complex derived from a triamino pentabenzimidazole ligand. Inorg Chem 37:553–562

    Article  PubMed  CAS  Google Scholar 

  56. Tehlan S, Hundal MS, Mathur P (2004) Copper(II) complexes of N-Octylated Bis(benzimidazole) diamide ligands and their peroxide-dependent oxidation of aryl alcohols. Inorg Chem 43:6589–6595

    Article  PubMed  CAS  Google Scholar 

  57. Addison AW, Rao TN, Reedijk J, Rijn JV, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of Copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of Aqua[l,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) Perchlorate. J Chem Soc Dalton Trans 1349–1356

  58. Spek AL (2003) Single-crystal structure validation with the program. PLATON J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University of Delhi, Delhi for a special grant. We are thankful to USIC-CIF, University of Delhi, Delhi, India for NMR and Single Crystal X-ray data. One of the authors is thankful to UGC for providing senior research fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Mathur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahiya, K., Mathur, P. Bis-Benzimidazolyl Diamide Based Fluorescent Probe for Copper(II): Synthesis, Structural and Fluorescence Studies. J Fluoresc 23, 767–776 (2013). https://doi.org/10.1007/s10895-013-1182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1182-1

Keywords

Navigation