Skip to main content

Advertisement

Log in

Different Conformation of Thiol Protease Inhibitor During Amyloid Formation: Inhibition by Curcumin and Quercetin

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cystatins are thiol proteinase inhibitors ubiquitously present in mammalian body and serve various important physiological functions. In the present study, we examined the effects of acid denaturation on newly identified thiol protease inhibitors from the lungs of Capra hircus (Goat) with a focus on protein conformational changes and amyloid fibril formation. Acid denaturation as studied by CD (Circular Dichroism) and fluorescence spectroscopy showed that purified inhibitor named GLC (Goat Lung Cystatin) populates three partly unfolded species, a native like state at pH 3.0, a partly unfolded intermediate at pH2.0, and unstructured unfolded state at pH 1.0, from each of which amyloid like fibrils grow as assessed by thioflavin T (ThT) spectroscopy. The result showed, native like structure formed at pH 3.0 is more responsive towards amyloid formation when compare to other conformation of proteins. Morphology of the protein species incubated for amyloid process was observed using transmission electron microscopy (TEM). Moreover, anti-fibrillogenic effects of curcumin and quercetin were analysed using ThT binding assay. Curcumin and quercetin produced a concentration dependent decline inThT fluorescence suggesting deaggregation of the fibrils. When added prior to amyloid fibril initiation 50 μM curcumin inhibited amyloid aggregation. However, more quercetin is needed to prevent the same extent of fibrillation. Implications for therapeutics in view of polyphenols as essential nutrients are suggested in lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schlehe JS, Lutz AK, Pilsl A et al (2008) Aberrant folding of pathogenic Parkin mutants: aggregation versus degradation. J Biol Chem 283:13771–13779

    Article  PubMed  CAS  Google Scholar 

  2. Luheshi LM, Dobson CM (2009) Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett 583:2581–2586

    Article  PubMed  CAS  Google Scholar 

  3. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349

    Article  PubMed  CAS  Google Scholar 

  4. Pedersen CB, Bross P, Winter VS et al (2003) Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J Biol Chem 278:47449–47458

    Article  PubMed  CAS  Google Scholar 

  5. Pedersen CB, Kolvraa S, Kolvraa A et al (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124:43–56

    Article  PubMed  CAS  Google Scholar 

  6. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  7. Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  PubMed  CAS  Google Scholar 

  8. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  PubMed  CAS  Google Scholar 

  9. Chiti F, Taddei N, Bucciantini M, White P, Rampovi G, Dobson CM (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J 19:1441–1449

    Article  PubMed  CAS  Google Scholar 

  10. Wilkins DK, Dobson CM, Gross M (2000) Biophysical studies of the development of amyloid fibrils from a peptide fragment of cold shock protein B. Eur J Biochem 267:2609–2616

    Article  PubMed  CAS  Google Scholar 

  11. Krebs MR, Wilkins DK, Chung EW, Pitkeathy MC, Chamberlin AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300:541–549

    Article  PubMed  CAS  Google Scholar 

  12. Ramirez-Alvarado M, Merkel JS, Regan LA (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. PNAS 97:8974–8984

    Article  Google Scholar 

  13. Zurdo J, Guijarro JI, Jimenez JL, Saibil HR, Dobson CM (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J Mol Biol 311:325–340

    Article  PubMed  CAS  Google Scholar 

  14. Pertinhez TA, Bouchard M, Tomlinson EJ, Wain R, Ferguson SJ, Dobson CM (2001) Amyloid fibril formation by a helical cytochrome. FEBS Lett 495:184–186

    Article  PubMed  CAS  Google Scholar 

  15. Fandrich M, Flectcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    Article  PubMed  CAS  Google Scholar 

  16. Priyadarshini M, Bano B (2012) Conformational changes during amyloid fibril formation of pancreatic thiol proteinase inhibitor: effect of copper and zinc. Mol Biol Rep 39:2945–2955

    Article  PubMed  CAS  Google Scholar 

  17. Rashid F, Sharma S, Baig MA, Bano B (2006) Molten globule state of human placental cystatin (HPC) at low pH conditions and the effects of trifluoroethanol (TFE) and methanol. Biochem Cell Biol 84:126–134

    Article  PubMed  CAS  Google Scholar 

  18. Ahmad B, Khan RH (2006) Studies on the acid unfolded and molten globule states of catalytically active stem bromelain: a comparison with catalytically inactive form. J Biochem 140:501–508

    Article  PubMed  CAS  Google Scholar 

  19. Zerovnik E, Jerala R, Kroon-Zitko L (1992) Intermediates in denaturation of a small globular protein, recombinant human stefin B. Biol Chem 267:9041–9046

    CAS  Google Scholar 

  20. Khurana R, Ionescu-Zanetti C, Pope MLJ, Nielson L, Ramirez-Al Varado M, Regan L, Fink AL, Carter SA (2003) A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophy J 85:1135–1144

    Article  CAS  Google Scholar 

  21. Ahmad A et al (2004) The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains. Biol Chem 279:1499–15013

    Google Scholar 

  22. Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Wetzel YX (2004) Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 335:833–842

    Article  PubMed  CAS  Google Scholar 

  23. Priyadarshini M, Bano B (2010) Cystatin like thiol proteinase inhibitor from pancreas of Capra hircus: purification and detailed biochemical characterization. Amino Acids 38:1001–1010

    Article  PubMed  CAS  Google Scholar 

  24. Turk V, Stoka V, Turk D (2008) Cystatins: biochemical and structural properties, and medical relevance. Frontier Bioscience 13:5406–5420

    Article  CAS  Google Scholar 

  25. Skerget K, Vilfan A, Pompe-Novak M et al (2009) The mechanism of amyloid-fibril formation by stefin B: temperature and protein concentration dependence of the rates. Proteins 74:425–436

    Article  PubMed  CAS  Google Scholar 

  26. Khan MS, Bano B (2009) Purification, characterization and kinetics of thiol protease inhibitor from goat (Capra hircus) lung. Biochemistry (Moscow Russ Fed) 74:781–788

    Article  CAS  Google Scholar 

  27. Tyagi S, Singh G, Sharma A (2010) Effect of garlic on cardiovascular disorders: a review. J Pharmac Sci Rev Res 3:53–55

    CAS  Google Scholar 

  28. Cheng B, Liu X, Gong H, Huang L, Chen H, Zhang X, Li C, Yang M, Ma B, Jiao L, Zheng L, Huang K (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem 59:13147–13155

    Article  PubMed  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  30. Mulqueen PM, Kronamn MJ (1982) Binding of naphthalene dyes to the N and A conformers of bovine alpha-lactalbumin. Arch Biochem Biophys 215:28–39

    Google Scholar 

  31. Wang SSS, Liu KN, Han TC (2010) Amyloid fibrillation and cytotoxicity of insulin are inhibited by the amphiphilic surfactants. Biochim Biophys Acta 1802:519–530

    Article  PubMed  CAS  Google Scholar 

  32. Zerovnik E, Skarabot M, Skerget K et al (2007) Amyloid fibril formation by human stefin B: influence of pH and TFE on fibril growth and morphology. Amyloid 14:237–247

    Google Scholar 

  33. LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  34. Ahmad A, Uversky VN, Hong D et al (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675

    Article  PubMed  CAS  Google Scholar 

  35. He Y, Zhou H, Tang H et al (2006) Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin. J Biol Chem 281:1048–1057

    Article  PubMed  CAS  Google Scholar 

  36. Jenko S, Skaraboot M et al (2004) Different propensity to form amyloid fibrils by two homologous proteins-Human stefins A and B: searching for an explanation. Proteins Struct Funct Bioinf 55:417–425

    Article  CAS  Google Scholar 

  37. Rabzelj S, Turk V, Zerovnik E (2005) In vitro study of stability and amyloid-fibril formation of two mutants of human stefin B (cystatin B) occurring in patients with EPM1. Protein Sci 14:2713–2722

    Article  PubMed  CAS  Google Scholar 

  38. Holm NK, Jespersen SK, Thomassen LV et al (2007) Aggregation and fibrillation of bovine serum albumin. Biochim Biophys Acta 1774:1128–1138

    Article  PubMed  CAS  Google Scholar 

  39. Wang SSS, Liu KN, Lee WH (2009) Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys Chem 144:78–87

    Article  PubMed  CAS  Google Scholar 

  40. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  41. Davinelli S, Sapere N, Zella D, Bracale R, Intrieri M, Scapagnini G (2012) Pleiotropic protective effects of phytochemicals in Alzheimer’s disease. Oxid Med Cell Longev. doi:10.1155/2012/386527

Download references

Acknowledgements

The authors extend their appreciation to the deanship of scientific research at KSU for funding the work through the research group project No- RGP-VPP-151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilqees Bano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.S., Al-Senaidy, A.M., Priyadarshini, M. et al. Different Conformation of Thiol Protease Inhibitor During Amyloid Formation: Inhibition by Curcumin and Quercetin. J Fluoresc 23, 451–457 (2013). https://doi.org/10.1007/s10895-013-1158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1158-1

Keywords

Navigation