Skip to main content
Log in

Oxygen Diffusion into Multiwalled Carbon Nanotube Doped Polystrene Latex Films Using Fluorescence Technique

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This study examines the oxygen diffusion into polystyrene (PS) latex/multiwalled carbon nanotube (MWNT) nanocomposite films (PS/MWNT) consisting of various amounts of MWNT via steady state fluorescence technique (SSF). PS/MWNT films were prepared from the mixture of MWNT and pyrene (P)-labeled PS latexes at various compositions at room temperature. These films were then annealed at 170 °C above glass transition (Tg) temperature of PS. Fluorescence quenching measurements were performed for each film separately to evaluate the effect of MWNT content on oxygen diffusion. The Stern-Volmer equation for fluorescence quenching is combined with Fick’s law for diffusion to derive the mathematical expressions. Diffusion coefficients (D) were produced and found to be increased from 1.1 × 10−12 to 41 × 10−12 cm2s−1 with increasing MWNT content. This increase was explained via the existence of large amounts of pores in composite films which facilitate oxygen penetration into the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vara RA, Jandt KD, Kramer EJ, Giannelis FP (1996) Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater 8:2628

    Article  Google Scholar 

  2. Noh MW, Lee DC (1999) Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polym Bull 42:619

    Article  CAS  Google Scholar 

  3. Friedlander HZ, Grink CR (1964) Synthesis, thermal properties and applications of polymer-clay nanocomposites. J Polym Sci Polym Lett 2:475–479

    Article  CAS  Google Scholar 

  4. Kato C, Kuroda K, Takahara H (1981) Preparation and electrical-properties and of quaternary ammonium montromorillonite-polystrene complexes. Clay Clay Miner 29:294

    Article  CAS  Google Scholar 

  5. Doh JG, Cho I (1998) Synthesis and properties of polystyrene organoammonium montmorillonite hybrid. Polym Bull 41:511

    Article  CAS  Google Scholar 

  6. Li Y, Zhao B, Xie SB, Zhang S (2003) Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polym Int 52:892

    Article  CAS  Google Scholar 

  7. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329–11333

    Article  PubMed  CAS  Google Scholar 

  8. Pietraß T, Dewald JL, Clewett CFM, Tierney D, Ellis AV, Dias S, Alvarado A, Sandoval L, Tai S, Curran SA (2006) Electron spin resonance and Raman scattering spectroscopy of multi-walled carbon nanotubes: a function of acid treatment. J Nanosci Nanotechnol 6:135–140

    PubMed  Google Scholar 

  9. Barrer RM (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, New York, pp 164–217

    Google Scholar 

  10. Gorrasi G, Tammaro L, Tortora M, Vittoria V, Kaempfer D, Reichert P, Mülhaupt R (2003) Transport properties of organic vapors in nanocomposites of isotactic polypropylene. J Polym Sci Pol Phys 15:1798

    Google Scholar 

  11. Lu X, Manners I, Winnik MA (2001) Polymer/silica composite films as luminescent oxygen sensors. Macromolecules 34:1917

    Article  CAS  Google Scholar 

  12. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189

    Article  CAS  Google Scholar 

  13. Villaluenga PG, Khayet M, Lopez-Manchado MA, Valentin JL, Seoane B, Mengual JI (2007) Gas transport properties of polypropylene/clay composite membranes. Eur Polym J 43(4):1132

    Article  CAS  Google Scholar 

  14. Gorrasi G, Tortora M, Vittoria V, Kaempfer D, Mülhaupt R (2003) Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene. Polymer 44:3679

    Article  CAS  Google Scholar 

  15. Wen WY (1993) Motion of sorbed gases in polymers. Chem Soc Rev 22:117

    Article  CAS  Google Scholar 

  16. Cox ME, Dunn B (1986) Oxygen diffusion in poly (dimethyl siloxane) using fluorescence quenching .2. Filled samples. J Polym Sci Pol Chem 24:621

    Article  CAS  Google Scholar 

  17. Shaw G (1967) Quenching by oxygen diffusion of phosphorescence emission of aromatic molecules in polymethyl methacrylate. Trans Faraday Soc 63:2181

    Article  CAS  Google Scholar 

  18. Barker RE (1962) Diffusion in polymers: optical techniques. J Polym Sci 58:553

    Article  CAS  Google Scholar 

  19. Mac Callum JR, Rudkin AL (1978) A novel technique for measuring TH diffusion constant of oxygen in polymer films. Eur Polym J 14:655

    Article  CAS  Google Scholar 

  20. Cox ME, Dunn B (1986) Oxygen diffusion in poly (dimethyl siloxane) using fluorescence quenching. 1. Measurement technique and analysis. J Polym Sci 24:621–636

    CAS  Google Scholar 

  21. Cox ME, Dunn B (1986) Oxygen diffusion in poly (dımethyl sıloxane) using fluorescence quenching. 2. Filled Samples. J Polym Sci 24:2395–2400

    CAS  Google Scholar 

  22. MacCallum JR, Rudkin AL (1978) A novel technique for measuring TH diffusion constant of oxygen in polymer films. Eur Polym J 14:655–656

    Article  CAS  Google Scholar 

  23. Lu X, Manners I, Winnik MA (2001) In: Valuer B, Brochan JC (eds) Fluorescence spectroscopy; New trends in fluorescence spectroscopy. Springer Verlag, New York, ch. 12:229

    Google Scholar 

  24. Jayarajah CN, Yekta A, Manners I, Winnik MA (2000) Oxygen diffusion and permeability in alkylaminothionylphosphazene films intended for phosphorescence barometry applications. Macromolecules 33(15):5693

    Article  CAS  Google Scholar 

  25. Ruffolo R, Evans C, Liu XH, Ni Y, Pang Z, Park P, MacWilliams A, Gu X, Lu X, Yekta A, Winnik MA, Manners I (2000) Phosphorescent oxygen sensors utilizing sulfur-nitrogen-phosphorus polymer matrixes: synthesis, characterization, and evaluation of poly(thionylphosphazene)-b-poly(tetrahydrofuran) block copolymers. Anal Chem 72:1894

    Article  PubMed  CAS  Google Scholar 

  26. Pekcan O, Ugur S (1999) Oxygen diffusion into latex films annealed at various temperatures: a fluorescence study. J Coll Interface Sci 217:154–159

    Article  CAS  Google Scholar 

  27. Pekcan O, Ugur S (2000) Packing effect on oxygen diffusion in latex films; a photon transmission and fluorescence study. Polymer 41:7531–7538

    Article  CAS  Google Scholar 

  28. Liu JS, Feng JF, Winnik MA (1994) Study of polymer diffusion across the interface in latex films through direct energy transfer experiments. J Chem Phys 101:9096

    Article  CAS  Google Scholar 

  29. Birks JB (1975) Organic molecular photophysics. Wiley-Interscience, New York

    Google Scholar 

  30. Rice SA (1985) In: Bamford CH, Tipper CFH, Compton RG (eds) Diffusion-limited reactions in comprehensive chemical kinetics. Elsevier, Amsterdam

    Google Scholar 

  31. Crank J (1970) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  32. Matthews FL, Rawlings RD (2003) Composite materials: engineering and science. Woodhead publishing limited, Cambridge-England

    Google Scholar 

  33. Rao RMVGK, Balasubramanian N, Chanda M (1981) Moisture absorption phenomenon in permeable fiber polymer composites. J. Appl Polymer Sci 26:4069

    Google Scholar 

  34. Rao RMVGK, Chanda M, Balasubramanian (1983) N “a fickian diffusion model for permeable polymer composites. J Reinf Plast Compos 2:289–299

    Article  Google Scholar 

  35. Weisenberger MC, Grulke EA, Jacques D, Rantell T, Andrews R (2003) Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J Nanosci Nanotech 3(6)

  36. Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S. Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Composites Part B: Eng

  37. Lim SY, Sahimi M, Tsotsis TT, Kim N (2007) Molecular dynamics simulation of diffusion of gases in a carbon-nanotube–polymer composite. Phys Rev E 76:011810

    Article  Google Scholar 

  38. Vu DQ, Koros WJ, Miller SJ (2003) Mixed matrix membranes using carbon molecular sieves - I. Preparation and experimental results. J Membr Sci 211:311

    Article  CAS  Google Scholar 

  39. Chen H, Sholl DS (2006) Predictions of selectivity and flux for CH4/H-2 separations using single walled carbon nanotubes as membranes. J Membr Sci 269:152

    Article  CAS  Google Scholar 

  40. Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232

    Article  CAS  Google Scholar 

  41. Delozier DM, Watson KA, Smith JG, JrTC C, Connel JW (2006) Investigation of aromatic/aliphatic polyimides as dispersants for single wall carbon nanotubes. Macromolecules 39:1731

    Article  CAS  Google Scholar 

  42. Ponomarev S and Gouterman M (1998) presented at the 6th annual pressure sensitive paint workshop, settle, WA, Act. 6–8

  43. Kneas AK, Demas JN, Nguyen B, Lockhart A, Xu W, DeGraff BA (2002) Method for measuring oxygen diffusion coefficients of polymer films by luminescence quenching. Anal Chem 74:1111

    Article  PubMed  CAS  Google Scholar 

  44. Ugur S, Yargi O, Pekcan O (2009) Oxygen diffusion into polystyrene-bentonite films. Appl Clay Sci 43:447–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şaziye Uğur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yargı, Ö., Uğur, Ş. & Pekcan, Ö. Oxygen Diffusion into Multiwalled Carbon Nanotube Doped Polystrene Latex Films Using Fluorescence Technique. J Fluoresc 23, 357–366 (2013). https://doi.org/10.1007/s10895-013-1157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1157-2

Keywords

Navigation