Skip to main content
Log in

Optimization in Solvent Selection for Chlorin e6 in Photodynamic Therapy

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The photophysical properties of chlorin e6 (Ce6) in twelve different protic, aprotic and non-polar solvents were investigated using ultraviolet–visible and fluorescence spectroscopic methods. Solvatochromic effects were determined by the changes in quantum yield, Stokes shift, fluorescence half-life and excited state dipole moments of Ce6 in the different solvents. The absorption shifts observed in different solvents were further analyzed using the Kamlet-Abboud-Taft model and the nature of solute-solvent interactions between Ce6 and different protic and aprotic solvents was elucidated. The quantum yields were found highest in protic solvents (except water), followed by aprotic and non-polar solvents. Solvent polarity parameters showed a linear increasing trend with Stokes shift and fluorescence half-life, which indicated the presence of Ce6-solvent interaction. Using the Kamlet-Abboud-Taft model, a direct correlation between the solvent polarity parameters and absorption shift was observed, which substantiated the existence of Ce6-solvent interaction by hydrogen bond formation. The excited state dipole moments in specific protic and aprotic solvents were found to be higher than the ground state dipole moments, implying a more polar nature of Ce6 during excited state transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rauf MA, Graham JP, Bukallah SB, Al-Saedi MA (2009) Solvatochromic behavior on the absorption and fluorescence spectra of Rose Bengal dye in various solvents. Spectrochim Acta A Mol Biomol Spectrosc 72:133–137

    Article  PubMed  CAS  Google Scholar 

  2. Umadevi M, Suvitha A, Latha K, Rajkumar BJ, Ramakrishnan V (2007) Spectral investigations of preferential solvation and solute-solvent interactions of 1,4-dimethylamino anthraquinone in CH2Cl2/C2H5OH mixtures. Spectrochim Acta A Mol Biomol Spectrosc 67:910–915

    Article  PubMed  CAS  Google Scholar 

  3. McRae EG (1957) Theory of solvent effects on molecular electronic spectra. Frequency shifts. J Phys Chem 61:562–572

    Article  CAS  Google Scholar 

  4. Beddard GS, West MA (1981) Fluorescent probes. Academic, London

    Google Scholar 

  5. Wehry L (1990) Effects of molecular environment on fluorescence and phosphorescence. In: Guilbault GG (ed) Practical fluorescence, 2nd edn. Dekker, New York

    Google Scholar 

  6. Jang B, Choi Y (2012) Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2:190–197

    Article  PubMed  CAS  Google Scholar 

  7. Biswas S, Ahn HY, Bondar MV, Belfield KD (2012) Two-photon absorption enhancement of polymer-templated porphyrin-based J-aggregates. Langmuir 28:1515–1522

    Article  PubMed  CAS  Google Scholar 

  8. Reichardt C (2004) Solvents and solvent effect in organic chemistry, 3rd edn. WILEY-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  9. Mannekutla JR, Mulimani BG, Inamdar SR (2007) Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochim Acta A Mol Biomol Spectrosc 69:419–426

    Article  PubMed  Google Scholar 

  10. Gómez ML, Previtali CM, Montejano HA (2003) Photophysical properties of safranine O in protic solvents. Spectrochim Acta A Mol Biomol Spectrosc 60:2433–2439

    Article  Google Scholar 

  11. Guo H, Jiang J, Shi Y, Wang Y, Dong S (2007) Solvent effects on spectrophotometric titrations and vibrational spectroscopy of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin in aqueous DMF. Spectrochim Acta A Mol Biomol Spectrosc 67:166–171

    Article  PubMed  Google Scholar 

  12. Wang X, Lu M, Huo C, Li H, Wang Y, Li Z (2009) Solvent effects on the absorption, circular dichroism and Raman spectroscopy of meso-tetrakis [3-methoxy-4-(N-carbazyl)n-hexyloxyphenyl] porphyrin in water-THF solution. Spectrochim Acta A Mol Biomol Spectrosc 73:581–586

    Article  PubMed  Google Scholar 

  13. Gonçalves PJ, Franzen PL, Correa DS, Almeida LM, Takara M, Ito AS, Zílio SC, Borissevitch IE (2011) Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP). Spectrochim Acta A Mol Biomol Spectrosc 79:1532–1539

    Article  PubMed  Google Scholar 

  14. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K (2011) Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 6:230–239

    Article  Google Scholar 

  15. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Dekker, New York

    Google Scholar 

  16. Kawski A (1966) der Wellenzahl von elecktronenbanden lumineszierenden moleküle. Acta Phys Polon 29:507–518

    CAS  Google Scholar 

  17. Dabrowski JM, Pereira MM, Arnaut LG, Monteiro CJ, Peixoto AF, Karocki A, Urbańska K, Stochel G (2007) Synthesis, photophysical studies and anticancer activity of a new halogenated water-soluble porphyrin. Photochem Photobiol 83:897–903

    Article  PubMed  CAS  Google Scholar 

  18. Nagy PI, Völgyi G, Takács-Novák K (2008) Monte Carlo structure simulations for aqueous 1,4-dioxane solutions. J Phys Chem B 112:2085–2094

    Article  PubMed  CAS  Google Scholar 

  19. Allen BD, Benniston AC, Harriman A, Rostron SA, Yu C (2005) The photophysical properties of a julolidene-based molecular rotor. Phys Chem Chem Phys 7:3035–3040

    Article  PubMed  CAS  Google Scholar 

  20. Vladimir S, Victor A, Igor V, Tjeerd J, Holten D (2000) Comparative study of the photophysical properties of nonplanar tetraphenylporphyrin and octaethylporphyrin diacids. J Phys Chem B 104:9909–9917

    Article  Google Scholar 

  21. Duerr K, Troeppner O, Olah J, Li J, Zahl A, Drewello T, Jux N, Harvey JN, Ivanović-Burmazović I (2012) Solution behavior of iron(III) and iron(II) porphyrins in DMSO and reaction with superoxide. Effect of neighboring positive charge on thermodynamics, kinetics and nature of iron-(su)peroxo product. Dalton Trans 41:546–557

    Article  PubMed  CAS  Google Scholar 

  22. Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-aggregates of porphyrin − surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102:1528–1538

    Article  CAS  Google Scholar 

  23. Melavanki RM, Patil HD, Umapathy S, Kadadevarmath JS (2012) Solvatochromic effect on the photophysical properties of two coumarins. J Fluoresc 22:137–144

    Article  PubMed  CAS  Google Scholar 

  24. Weitman H, Schatz S, Gottlieb HE, Kobayashi N, Ehrenberg B (2001) Spectroscopic probing of the acid–base properties and photosensitization of a fluorinated phthalocyanine in organic solutions and liposomes. Photochem Photobiol 73:473–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Singapore Ministry of Health’s National Medical Research Council under IRG NMRC/1187/2008 (R-148-000-114-213) and GEA-NUS PPRL fund (N-148-000-008-001). There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Wah Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S., Heng, P.W.S. & Chan, L.W. Optimization in Solvent Selection for Chlorin e6 in Photodynamic Therapy. J Fluoresc 23, 283–291 (2013). https://doi.org/10.1007/s10895-012-1146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1146-x

Keywords

Navigation