Skip to main content
Log in

Coumarin-based Fluorescent Probes for H2S Detection

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Although hydrogen sulfide (H2S) has been known as a toxic gas with unpleasant rotten egg smell, the correlation between H2S and physiological processes has attracted scientists to develop brand new methods to monitor such a gaseous molecule in vitro and in vivo. Herein, we described a couple of coumarin-based fluorescent probes (1a and 1b) that can be activated by reduction of azide to amine in the presence of H2S. It should be emphasized that probe 1b demonstrated high selectivity and sensitivity for H2S over other relevant reactive sulfur species in vitro, as well as identified exogenous H2S in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FBM, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19(9):1196

    PubMed  CAS  Google Scholar 

  2. Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide–a novel mediator of inflammation? Curr Opin Pharmacol 6(2):125–129

    Article  PubMed  CAS  Google Scholar 

  3. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322(5901):587

    Article  PubMed  CAS  Google Scholar 

  4. Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie YF, Ohia SE (2009) Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem Res 34(3):400–406

    Article  PubMed  CAS  Google Scholar 

  5. Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8(3–4):661–670

    Article  PubMed  CAS  Google Scholar 

  6. Wu L, Yang W, Jia X, Yang G, Duridanova D, Cao K, Wang R (2008) Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest 89(1):59–67

    Article  PubMed  Google Scholar 

  7. Rose P, Moore PK, Ming SH, Nam OC, Armstrong JS, Whiteman M (2005) Hydrogen sulfide protects colon cancer cells from chemopreventative agent beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 11(26):3990

    PubMed  CAS  Google Scholar 

  8. Hu LF, Lu M, Wu ZY, Wong PTH, Bian JS (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75(1):27

    Article  PubMed  CAS  Google Scholar 

  9. Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285(29):21903–21907. doi:10.1074/jbc.R110.128363

    Article  PubMed  CAS  Google Scholar 

  10. Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5(4):493–501

    Article  PubMed  Google Scholar 

  11. Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists. Pharmacological Reports: PR 59(1):4–24

    PubMed  Google Scholar 

  12. Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51(1)

  13. Culotta E, Koshland DE Jr (1992) Molecule of the year. NO news is good news. Science 258:1862–1865

    Article  PubMed  CAS  Google Scholar 

  14. Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci 92(5):1475

    Article  PubMed  CAS  Google Scholar 

  15. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14(3):454–458

    Article  CAS  Google Scholar 

  16. Sen A, Albarella JD, Carey JR, Kim P, McNamara WB III (2008) Low-cost colorimetric sensor for the quantitative detection of gaseous hydrogen sulfide. Sensors and Actuators B Chem 134(1):234–237

    Article  Google Scholar 

  17. Schiavon G, Zotti G, Toniolo R, Bontempelli G (1995) Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes). Anal Chem 67(2):318–323

    Article  CAS  Google Scholar 

  18. Lawrence NS, Davis J, Jiang L, Jones TGJ, Davies SN, Compton RG (2000) The electrochemical analog of the methylene blue reaction: a novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 12(18):1453–1460

    Article  CAS  Google Scholar 

  19. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4(1):33–36

    Article  CAS  Google Scholar 

  20. Radford-Knoery J, Cutter GA (1993) Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal Chem 65(8):976–982

    Article  CAS  Google Scholar 

  21. Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed Engl 50(44):10327–10329. doi:10.1002/anie.201104305

    Article  PubMed  CAS  Google Scholar 

  22. Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T (2011) Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc 133(45):18003–18005. doi:10.1021/ja207851s

    Article  PubMed  CAS  Google Scholar 

  23. Lippert AR, New EJ, Chang CJ (2011) Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 133(26):10078–10080. doi:10.1021/ja203661j

    Article  PubMed  CAS  Google Scholar 

  24. Peng H, Cheng Y, Dai C, King AL, Predmore BL, Lefer DJ, Wang B (2011) A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed Engl 50(41):9672–9675. doi:10.1002/anie.201104236

    Article  PubMed  CAS  Google Scholar 

  25. Xuan W, Sheng C, Cao Y, He W, Wang W (2012) Fluorescent probes for the detection of hydrogen sulfide in biological systems. Angew Chem Int Ed Engl. doi:10.1002/anie.201107025

  26. Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes†. Org Lett 6(24):4603–4606. doi:10.1021/ol047955x

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Cole JM, Waddell PG, Lin TC, Radia J, Zeidler A (2012) Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A 116(1):727–737. doi:10.1021/jp209925y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by grants from Shandong Natural Science Foundation (No. JQ201019) and Independent Innovation Foundation of Shandong University, IIFSDU (No. 2010JQ005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Sun, W., Yu, X. et al. Coumarin-based Fluorescent Probes for H2S Detection. J Fluoresc 23, 181–186 (2013). https://doi.org/10.1007/s10895-012-1131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1131-4

Keywords

Navigation