Skip to main content
Log in

Structural and Upconversion Studies of Er3+ Codoped with CdS Nanoparticles in Sol-Gel Glasses

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The Er3+ codoped with CdS nanoparticles in sol-gel glass with an average particle size of about 10 nm have been synthesized by sol-gel method. The green and red up-conversion emissions centered at about 534, 560 and 680 nm, corresponding to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, respectively; were detected by a 800 nm excitation. The two-photon absorption process is involved in the green and red up-conversion emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu H, Guo H, Zhang M, Liu Y, Liu M, Zhao L-J (2012) Distribution of Nd3+ ions in oxyfluoride glass ceramics. Nanoscale Res Lett 7:275–288

    Article  PubMed  Google Scholar 

  2. R. Reisfeld, New materials for nonlinear optics, (1996) in: R. Reisfeld, C.K. Jorgensen (Eds.), Optical and Electronic Phenomena in Sol–Gel Glasses and Modern Applications, Series: Structure and Bonding, Vol. 85, Springer-Verlag, pp. 99.

  3. Ehrhart G, Capoen B, Robbe O, Beclin F, Boy P, Turrell S, Bouazaoui M (2008) Energy transfer between semiconductor nanoparticles (ZnS or CdS) and Eu3+ ions in sol-gel derive ZrO2 thin film. Opt Mater 30(10):1595–1602

    Article  CAS  Google Scholar 

  4. Zheng H, Gao D, Fu Z, Wang E, Lia Y, Tuan Y, Cui M (2011) Fluorescence enhancement of Ln3+ doped nanoparticles. J Lumin 131(3):423–428

    Article  CAS  Google Scholar 

  5. de Sousa DF, Zonetti LFC, Bell MJV, Ledullenger R, Hernandes AC, Nunesl LAO (1999) Er3+: Yb3+ codoped lead fluorindogallete glasses for min infrared and upconversion application. J Appl Phys 85:2502–2507

    Article  Google Scholar 

  6. Higuchi H, Takahashi M, Kawamoto Y, Kadono K, Ohtsuki T, Peyghambarian N, Kitamura N (1998) Optical transition and frequency upconversion emission of Er3+ ions in Ga2S3-GeS2-La2S3. J Appl Phys 83:19–27

    Article  CAS  Google Scholar 

  7. Kumar K, Rai SB, Rai DK (2006) Upconversion studies in Er3+ doped TeO2-M2O(M = Li, Na and K). Solid State Comm 139(7):363–369

    Article  CAS  Google Scholar 

  8. Tsuda M, Soga K, Inoue H, Inoue S, Makishima A (1999) Upconversion mechanism in Er3+ doped fluorozirconate glasses under 800 nm excitation. J Appl Phys 85:29–37

    Article  CAS  Google Scholar 

  9. White JO, Mungan CE (2011) Measurement of upconversion in Er: YAG via Z-scan. J Opt Soc Am B 28(10):2358–2361

    Article  CAS  Google Scholar 

  10. Li Y, Zhang J, Zhang X, Luo Y, Ren X, Zhao H, Wang X, Sun L, Yan C (2009) Near- infrared to visible upconversion in Er3+ and Yb3+ co-doped Lu2O3 nanocrystals: enhanced red color upconversion and three photon process in Green color upconversion. J Phys Chem C 113(11):4413–4418

    Article  CAS  Google Scholar 

  11. Righini SC, Pelli S, Fossi M, Brenci M, Lipovskii AA, Kolobkova EV, Speghini A, Bettinelli M (2001) Characterization of Er-doped sodium-niobium phosphate glasses. Proc SPIE 4282:210

    Article  CAS  Google Scholar 

  12. Tanabe S, Sugimoto N, Ito S, Handa T (2000) Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier. J Lumin 87–89:670–672

    Article  Google Scholar 

  13. Feng X, Tanaber S, Hanada T (2001) Spectroscopic properties and thermal stability of Er3+ doped Germanotellurite glasses for broad band fiber amplifiers. Jn Am Ceram Soc 84(1):165–171

    Article  CAS  Google Scholar 

  14. Freek Suijver J (2008) In: Ronda C (ed) Luminescence: From theory to application. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, p 133

    Google Scholar 

  15. R. W. Boyed, (2008), Nonlinear Optics, Academic Press, 3rd Eds., Elsevier

  16. Wang JS, Vogel EM, Snitzer E (1994) Tellurite glass: a new candidate for fiber devices. Opt Mater 3(3):187–203

    Article  CAS  Google Scholar 

  17. Kumar VR, Reddy MR, Verraiah N (1995) Effect of DC field and X-ray irradiation on dielectric properties of ZnF2-PbO-TeO2. Phys State Sol (a) 147:601–610

    Article  CAS  Google Scholar 

  18. Bokatial L, Rai S (2012) Photoluminescence and energy transfer study of Eu3+ codoped with CdS nanoparticles in silica glasses. J Fluoresc 22:505–510

    Article  PubMed  CAS  Google Scholar 

  19. Baby Suganthi AR, Joshi AG, Sagayaraj P (2012) A novel two phase thermal approach for synthesizing CdSe/CdS core/ shell nanostructure. J Nanopart Res 14:691–700

    Article  Google Scholar 

  20. Wang S, Li Y, Bai J, Yang Q, Song Y, Zhang C (2009) Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene. Bull Mater Sci 32(5):487–491

    Article  CAS  Google Scholar 

  21. Kushwaha K, Gautom N, Singh P, Ramrakhaini M (2012) Synthesis and photoluminescence of CdSe/PVA nanocomposites. J Phys Conf Ser 365:012014

    Article  Google Scholar 

  22. Rai S, Bokatial L (2011) Effect of CdS nanoparticles on photoluminescence spectra of Tb3+ in sol-gel derived silica glasses. Bull Mater Sci 34:227–231

    Article  CAS  Google Scholar 

  23. Rai S, Bokatial L, Dihingia PJ (2011) Effect of CdS nanoparticles on fluorescence from Sm3+ doped SiO2 glass. J Lumin 131:978–983

    Article  CAS  Google Scholar 

  24. Bokatial L, Rai S (2010) Optical properties and upconversion of Pr3+ doped CdS nanoparticles in sol-gel glasses. J Lumin 130:1857–1862

    Article  CAS  Google Scholar 

  25. Goswami A (2007) Thin film fundamentals. New Age International Publishers, New Delhi, p 69

    Google Scholar 

  26. Judd BR (1962) Optical absorption intensities of rare-earth ion. Phy Rev 127:750–761

    Article  CAS  Google Scholar 

  27. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  28. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy level in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+. J Chem Phys 49:4424–4442

    Article  CAS  Google Scholar 

  29. Ravi Kumar AV, Rao BA, Veeraiah N (1998) Dielectric properties of LiF-B2O3 glasses doped with certain rare earth ions. Bull Mater Sci 21:341–348

    Article  CAS  Google Scholar 

  30. Chen CY, Petrin RR, Yeh DC, Sibley WA (1989) Concentration dependent energy transfer processes in Er3+ and Tm3+ doped heavy metal fluoride glasses. Opt Lett 14:432–434

    Article  PubMed  CAS  Google Scholar 

  31. Miyagawa T, Dexter DL (1970) Phonon sideband, multiphonon relaxation of excited state and phonon-assisted energy transfer between ion in solids. Phys Rev B 1:2961–2969

    Article  Google Scholar 

  32. Shinn MD, Sibley WA, Drexhave MG, Brown EN (1983) Optical transition of Er3+ ions in fluorozirconate glass. Phy Rev B 27:6635–6648

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors wish to thanks Mr. Joston Nongkyrih, SAIF, NEHU for technical support in taking TEM micrograph. One of us (L. Bokatial) would like to thank the University Grant Commission (UGC) for the fellowship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokatial, L., Rai, S. Structural and Upconversion Studies of Er3+ Codoped with CdS Nanoparticles in Sol-Gel Glasses. J Fluoresc 22, 1639–1645 (2012). https://doi.org/10.1007/s10895-012-1108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1108-3

Keywords

Navigation