Skip to main content

UV-Visible Photoluminescence of TiO2 Nanoparticles Prepared by Hydrothermal Method


TiO2 colloidal nanoparticles and nanocrystals are prepared by hydrolysis of titanium isopropoxide employing a surfactant-free synthetic hydrothermal method. The synthesized samples are characterized by X-ray diffraction (XRD), HRTEM and FTIR. The XRD study confirms that the size of the colloidal nanoparticle is around 4 nm which the HRTEM analysis indicates the sizes of the colloidal nanoparticles are in the range of 2.5 nm. The fluorescence property of the TiO2 colloidal nanoparticles studied by the emission spectrum confirms the presence of defect levels caused by the oxygen vacancies. We have observed new emission bands at 387 nm,421 nm, 485 nm, 530 nm and 574 nm wavelengths, first one (387 nm) being emission due to annihilation of excitons while remaining four could be arising from surface states. The emission spectrum of annealed nanocrystallites is also having these four band emissions. It is observed that the surface state emission basically consists of two categories of emission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Li L, Hu J, Yang W, Alivisatos AP (2001) Nano Lett 1(7):349–351

    Article  CAS  Google Scholar 

  2. Alivisatos AP (1996) Science 271:933–937

    Article  CAS  Google Scholar 

  3. Singh Nalwa H (2000) Nanostructured materials and nanotechnology. Academic Press 257–259

  4. Wang Y, Herron N (1988) J Phys Chem 92:4988

    Article  CAS  Google Scholar 

  5. Brus LE (1983) J Chem Phys 79:5566

    Article  CAS  Google Scholar 

  6. Ito S, Yamada Y, Kuze M, Tabata K, Yashima T J Mater Sci 39(18):5853–5856

  7. Nakato Y, Tsumura A, Tsubomura H (1982) Chem Phys Lett 85:387

    Article  CAS  Google Scholar 

  8. Oregan B, Gratzel M (1991) Nature 353:737

    Article  CAS  Google Scholar 

  9. Berenson ME (1984) Color Res Appl 9(2):98–102

    Article  Google Scholar 

  10. Hudec B, Husekova K, Dobrocka E, Lalinsky T, Aarik J, Aidla A, Frohlich K (2010) IOP Conf Series Mater Sci Eng 8:012024

    Article  Google Scholar 

  11. Zhang JZ (2000) J Phys Chem B 104(31):7239–7253

    Article  CAS  Google Scholar 

  12. Plugaru R, Cremades A, Piqueras J (2004) J Phys Condens Matter 16:S261–S268

    Article  CAS  Google Scholar 

  13. Pascual J, Camassel J, Mathieu H (1978) Phys Rev B 18:5606–5614

    Article  CAS  Google Scholar 

  14. Glassford KM, Chelikowsky JR (1992) Phys Rev B 45:3874–3877

    Article  CAS  Google Scholar 

  15. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  CAS  Google Scholar 

  16. Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM J Mater Sci Mater Electron. doi:10.1007/s10854-010-0218-4

  17. Tang H, Berger H, Schmid PE, Levy F (1993) Solid State Commun 87(9):847–850

    Article  CAS  Google Scholar 

  18. Zhao Y, Li C, Liu X, Feng Gu, Jiang H, Shao W, Zhang L, He Y (2007) Mater Lett 61:79–83

    Article  CAS  Google Scholar 

  19. Wang X, Feng Z, Shi J, Jia G, Shen S, Zhou J, Li C (2010) Phys Chem 12:7083–7090

    Article  CAS  Google Scholar 

  20. Koch U, Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 122:507

    Article  CAS  Google Scholar 

  21. Irimpan L, Deepthy A, Krishnan B, Nampoori VPN, Radhakrishnan P (2007) Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J Appl Phys 102:063524

    Article  Google Scholar 

  22. Jacques I (1971) Pankove - Optical processes in semiconductors. 422 pages –

  23. Daude N, Gout C, Jouanin C (1977) Phys Rev B 15:3229

    Article  CAS  Google Scholar 

  24. Madhu Kumar P, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122–130

    Article  Google Scholar 

  25. Mochizuki S (2003) Physica B 340–342:944–948

    Article  Google Scholar 

  26. Pan D, Zhao N, Wang Q, Jiang S, Ji X, An L (2005) Adv Mater 17:1991

    Article  CAS  Google Scholar 

  27. Hanamura E (1990) Phys Rev B 42:1724

    Article  Google Scholar 

Download references


The authors wish to acknowledge UGC New Delhi for the financial assistance through CELOS project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Mathew.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mathew, S., kumar Prasad, A., Benoy, T. et al. UV-Visible Photoluminescence of TiO2 Nanoparticles Prepared by Hydrothermal Method. J Fluoresc 22, 1563–1569 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Colloidal nanoparticles
  • Anatase
  • Fluorescence