Abstract
TiO2 colloidal nanoparticles and nanocrystals are prepared by hydrolysis of titanium isopropoxide employing a surfactant-free synthetic hydrothermal method. The synthesized samples are characterized by X-ray diffraction (XRD), HRTEM and FTIR. The XRD study confirms that the size of the colloidal nanoparticle is around 4 nm which the HRTEM analysis indicates the sizes of the colloidal nanoparticles are in the range of 2.5 nm. The fluorescence property of the TiO2 colloidal nanoparticles studied by the emission spectrum confirms the presence of defect levels caused by the oxygen vacancies. We have observed new emission bands at 387 nm,421 nm, 485 nm, 530 nm and 574 nm wavelengths, first one (387 nm) being emission due to annihilation of excitons while remaining four could be arising from surface states. The emission spectrum of annealed nanocrystallites is also having these four band emissions. It is observed that the surface state emission basically consists of two categories of emission.
This is a preview of subscription content, access via your institution.









References
Li L, Hu J, Yang W, Alivisatos AP (2001) Nano Lett 1(7):349–351
Alivisatos AP (1996) Science 271:933–937
Singh Nalwa H (2000) Nanostructured materials and nanotechnology. Academic Press 257–259
Wang Y, Herron N (1988) J Phys Chem 92:4988
Brus LE (1983) J Chem Phys 79:5566
Ito S, Yamada Y, Kuze M, Tabata K, Yashima T J Mater Sci 39(18):5853–5856
Nakato Y, Tsumura A, Tsubomura H (1982) Chem Phys Lett 85:387
Oregan B, Gratzel M (1991) Nature 353:737
Berenson ME (1984) Color Res Appl 9(2):98–102
Hudec B, Husekova K, Dobrocka E, Lalinsky T, Aarik J, Aidla A, Frohlich K (2010) IOP Conf Series Mater Sci Eng 8:012024
Zhang JZ (2000) J Phys Chem B 104(31):7239–7253
Plugaru R, Cremades A, Piqueras J (2004) J Phys Condens Matter 16:S261–S268
Pascual J, Camassel J, Mathieu H (1978) Phys Rev B 18:5606–5614
Glassford KM, Chelikowsky JR (1992) Phys Rev B 45:3874–3877
Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646
Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM J Mater Sci Mater Electron. doi:10.1007/s10854-010-0218-4
Tang H, Berger H, Schmid PE, Levy F (1993) Solid State Commun 87(9):847–850
Zhao Y, Li C, Liu X, Feng Gu, Jiang H, Shao W, Zhang L, He Y (2007) Mater Lett 61:79–83
Wang X, Feng Z, Shi J, Jia G, Shen S, Zhou J, Li C (2010) Phys Chem 12:7083–7090
Koch U, Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 122:507
Irimpan L, Deepthy A, Krishnan B, Nampoori VPN, Radhakrishnan P (2007) Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J Appl Phys 102:063524
Jacques I (1971) Pankove - Optical processes in semiconductors. 422 pages –
Daude N, Gout C, Jouanin C (1977) Phys Rev B 15:3229
Madhu Kumar P, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122–130
Mochizuki S (2003) Physica B 340–342:944–948
Pan D, Zhao N, Wang Q, Jiang S, Ji X, An L (2005) Adv Mater 17:1991
Hanamura E (1990) Phys Rev B 42:1724
Acknowledgments
The authors wish to acknowledge UGC New Delhi for the financial assistance through CELOS project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mathew, S., kumar Prasad, A., Benoy, T. et al. UV-Visible Photoluminescence of TiO2 Nanoparticles Prepared by Hydrothermal Method. J Fluoresc 22, 1563–1569 (2012). https://doi.org/10.1007/s10895-012-1096-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10895-012-1096-3
Keywords
- Colloidal nanoparticles
- Anatase
- Fluorescence