Skip to main content

Sorption and Desorption of PVA-Pyrene Chains in and out of Agarose Gel

Abstract

In situ steady-state fluorescence (SSF) measurement technique was applied to investigation of pyrene labeled Poly(vinyl alcohol) (PVA-Py) molecules diffusion in and out of agarose gels. Gel samples with four different concentration of agarose were prepared. PVA-Py was synthesized by “click” chemistry method and dissolved in water to use in diffusion experiments. The results were analyzed by using Fickian type diffusion model, and it was found that sorption and desorption processes of PVA-Py molecules in and out of agarose gel have two distinct regions for short and long diffusion times. Sorption and desorption coefficients were measured and it was seen that the diffusion rates were much larger at short times and at lower agarose concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ottenbrite RM, Huang SJ, Park K (1996) Hydrogels and Biodegradable Polymers for Bioapplications, ACS Symposium Series 627, Washington DC pp 2–10

  2. Singh T, Meena R, Kumar A (2009) Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. J Phys Chem B 113:2519–2525

    PubMed  Article  CAS  Google Scholar 

  3. Narayanan J, Xiong JY, Liu XY (2006) Determination of agarose gel pore size: absorbance measurements vis a vis other techniques. J Phys Conf Ser 28:83–86

    Article  CAS  Google Scholar 

  4. Nijenhuis KT (1997) Thermoreversible Networks. Book series: Advances in Polymer Science, vol 130. Springer Verlag, Berlin

    Google Scholar 

  5. Foord SA, Atkins EDT (1989) New X-ray-diffraction results from agarose-extended single helix structures and implications for gelation mechanism. Biopolymers 28:1345–1365

    Article  CAS  Google Scholar 

  6. Mohammed ZH, Hember MWN, Richardson RK, Morris ER (1998) Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohyd Polym 36:15–26

    Article  CAS  Google Scholar 

  7. Dea ICM, McKinnon AA, Rees DA (1972) Tertiary and quaternary structure in aqueous polysaccharide systems which model cell-wall cohesion-reversible changes in conformation and association of agarose, carrageenan and galactomannans. J Mol Biol 68:153–172

    PubMed  Article  CAS  Google Scholar 

  8. Fatin-Rouge N, Milon A, Buffle J (2003) Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J Phys Chem B 107:12126–12137

    Article  CAS  Google Scholar 

  9. Tako M, Nakamura S (1988) Gelation mechanism of agarose. Carbohydr Res 180:277–284

    Article  CAS  Google Scholar 

  10. Norton IT, Goodall DM, Austen KRJ, Morris ER, Rees DA (1986) Dynamics of molecular organization in agarose sulphate. Biopolymers 25:1009–1029

    Article  CAS  Google Scholar 

  11. Guenet JM, Brulet A, Rochas C (1993) Agarose chain conformation in the sol state by neutron-scattering. Int J Biol Macromol 15:131–132

    PubMed  Article  CAS  Google Scholar 

  12. Lai VMF, Wong PA, Lii CY (2000) Effects of cation properties on sol–gel transition and gel properties of κ-carrageenan. J Food Sci 65:1332–1337

    Article  CAS  Google Scholar 

  13. Kara S, Tamerler C, Bermek H, Pekcan Ö (2003) Hysteresis during sol–gel and gel–sol phase transitions of kappa carrageenan: a photon transmission study. J Bioact Compat Pol 18:33–44

    Article  CAS  Google Scholar 

  14. Kara S, Arda E, Dolastir F, Pekcan Ö (2011) Thermal phase transitions of agarose in various compositions: a fluorescence study. J Fluoresc 21:1871–1877

    PubMed  Article  Google Scholar 

  15. Matsuo M, Tanaka T, Ma L (2002) Gelation mechanism of agarose and kappa-carrageenan solutions estimated in terms of concentration fluctuation. Polymer 43:5299–5309

    Article  CAS  Google Scholar 

  16. Pines E, Prins W (1973) Structure–property relations of thermoreversible macromolecular hydrogels. Macromolecules 6:888–895

    Article  CAS  Google Scholar 

  17. Fatin-Rouge N, Wilkinson KJ, Buffle J (2006) Combining small angle neutron scattering (SANS) and fluorescence correlation spectroscopy (FCS) measurements to relate diffusion in agarose gels to structure. J Phys Chem B 110:20133–20142

    PubMed  Article  CAS  Google Scholar 

  18. Watase M, Nishinari K (1988) Thermal and rheological properties of agarose dimethyl-sulfoxide water gels. Polym J 20:1125–1133

    Article  CAS  Google Scholar 

  19. Rochas C, Brulet A, Guenet JM (1994) Thermoreversible gelation of agarose in water dimethyl-sulfoxide mixtures. Macromolecules 27:3830–3835

    Article  CAS  Google Scholar 

  20. Matsuo M, Sugiura Y, Takematsu S, Ogita T, Sakabe T, Nakamura R (1997) Relationship between drawability of poly(vinyl alcohol) films prepared from semi-dilute solutions and phase separation of the solutions studied in terms of stereoregularity and degree of polymerization. Polymer 38:5953–5967

    Article  CAS  Google Scholar 

  21. Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59:131–144

    PubMed  Article  CAS  Google Scholar 

  22. Liang S, Xu J, Weng L, Dai H, Zhang X, Zhang L (2006) Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J Control Release 115:189–196

    PubMed  Article  CAS  Google Scholar 

  23. Maaloum M, Pernodet N, Tinland B (1998) Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis 1:1606–1610

    Article  Google Scholar 

  24. Xiong JY, Narayanan J, Liu XY, Chong TK, Chen SB, Chung TS (2005) Topology evolution and gelation mechanism of agarose gel. J Phys Chem B 109:5638–5643

    PubMed  Article  CAS  Google Scholar 

  25. Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J 77:542–552

    PubMed  Article  CAS  Google Scholar 

  26. Sebti I, Blanc D, Carnet-Ripoche A, Saurel R, Coma V (2004) Experimentally study and modeling of nisin diffusion in agarose gels. J Food Eng 63:185–190

    Article  Google Scholar 

  27. Johnson EM, Berk DA, Jain RK, Deen WM (1996) Hindered diffusion in agarose gels: test of effective medium model. Biophys J 70:1017–1026

    PubMed  Article  CAS  Google Scholar 

  28. Tari Ö, Kara S, Pekcan Ö (2009) Critical exponents of kappa carrageenan in the coil-helix and helix-coil hysteresis loops. J Macromol Sci B 48:812–822

    Article  CAS  Google Scholar 

  29. Tari Ö, Kara S, Pekcan Ö (2011) Study of thermal phase transitions in iota carrageenan gels via fluorescence technique. J Appl Polym Sci 121:2652–2661

    Article  CAS  Google Scholar 

  30. Ataman E, Pekcan Ö (2007) Small molecule diffusion into swelling iota-carrageenan gels: a fluorescence study. J Biomol Struct Dyn 24:1–9

    Article  Google Scholar 

  31. Evingur GA, Karsli K, Pekcan Ö (2006) Monitoring small molecule diffusion into hydrogels at various temperatures by fluorescence technique. Int J Pharmaceut 326:7–12

    Article  Google Scholar 

  32. Marten FL (2004) Vinyl alcohol polymers. In: Kroschwitz JI (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York. 8:399–436

  33. Ossipov DA, Hilborn J (2006) Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39:1709–1718

    Article  CAS  Google Scholar 

  34. Gacal BN, Koz B, Gacal B, Kiskan B, Erdogan M, Yagci Y (2009) Pyrene functional poly(vinyl alcohol) by “click” chemistry. J Polym Sci Pol Chem 47:1317–1326

    Article  CAS  Google Scholar 

  35. Odaci D, Gacal BN, Gacal B, Timur S, Yagci Y (2009) Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via “click” chemistry. Biomacromolecules 10:2928–2934

    PubMed  Article  CAS  Google Scholar 

  36. Medine EI, Odaci D, Gacal BN, Gacal B, Sakarya S, Unak P, Timur S, Yagci Y (2010) A new approach for in vitro imaging of breast cancer cells by anti-metadherin targeted PVA-pyrene. Macromol Biosci 10:657–663

    PubMed  Article  CAS  Google Scholar 

  37. Crank J, Park GS (1968) Diffusion in Polymers. Academic Press, London

    Google Scholar 

  38. Ugur S, Pekcan Ö (2005) Small molecule desorption from a swelling polymeric glass in polymer solution: energy transfer method. Mater Chem Phys 92:269–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Kara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kara, S., Gacal, B., Tunc, D. et al. Sorption and Desorption of PVA-Pyrene Chains in and out of Agarose Gel. J Fluoresc 22, 1073–1080 (2012). https://doi.org/10.1007/s10895-012-1045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1045-1

Keywords

  • Agarose gel
  • Diffusion
  • Fluorescence
  • Poly(vinyl alcohol)
  • Pyrene