Skip to main content
Log in

Whole-Object Fluorescence Lifetime Setup for Efficient Non-Imaging Quantitative Intracellular Fluorophore Measurements

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present study we introduce a Whole-Object Fluorescence Life Time (wo-FLT) measurement approach for ease and a relatively inexpensive method of tracing alterations in intracellular fluorophore distribution and in the physical-chemical features of the microenvironments hosting the fluorophore. Two common fluorophores, Rhodamine 123 and Acridine Orange, were used to stain U937 cells which were incubated, with and without either Carbonyl cyanide 3-chlorphenylhydrazon or the apoptosis inducer H2O2. The wo-FLT, which is a non-imaging quantitative measurement, was able to detect several fluorescence decay components and corresponding weights in a single cell resolution. Following cell treatment, both decay time and weight were altered. Results suggest that the prominent factor responsible for these alterations and in some cases to a shift in emission spectrum as well, is the intracellular fluorophore local concentration. In this study it was demonstrated that the proposed wo-FLT method is superior to color fluorescence based imaging in cases where the emission spectrum of a fluorophore remains unchanged during the investigated process. The proposed wo-FLT approach may be of particular importance when direct imaging is impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FLT:

fluorescence lifetime

wo-FLT:

Whole-Object Fluorescence Life Time

FI:

Fluorescence intensity

FLIM:

Fluorescence life-time imaging

PMP:

plasma membrane potential

AO:

Acridine Orange

Rh123:

Rhodamine 123

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

References

  1. Shapiro HM (1995) Practical cytometry. Alan R. Liss Inc, New York, p 314, 315, and 327–329

    Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edition Chapter 9. Garland Science, New York

    Google Scholar 

  3. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  4. Cundall RB, Dale RE (1983) Time-resolved fluorescence spectroscopy in biochemistry and biology. Plenum, NATO ASI series. Series A, life sciences. New York

  5. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley–VCH, Weinheim

    Google Scholar 

  6. Miller JN (1981) Standard in fluorescence spectrometry. Chapman and Hall, London

    Book  Google Scholar 

  7. Epps DE, Wolfe ML, Groppi V (1994) Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dyes bis-(1,3- dibutylbarbituric acide) trimethine oxonol (Dibac4(3)) in model systems and cells. Chem Phys Lipids 69:137–150

    Article  PubMed  CAS  Google Scholar 

  8. Ando J, Smith NI, Fujita K, Kawata S (2009) Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells. Eur Biophys J 38:255–262

    Article  PubMed  CAS  Google Scholar 

  9. Sorgenfrei S, Chiu C, Gonzalez RL Jr, Yu YJ, Kim P, Nuckolls C, Shepard KL (2011) Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology 6:126–132

    Article  PubMed  CAS  Google Scholar 

  10. Hsua YM, Chang CC (2009) A novel frequency method for quantitative analysis of fluorescence dye concentration by using series photodetector frequency circuit system. Sensor Actuator 154:23–29

    Article  Google Scholar 

  11. Squire A, Verveer PJ, Bastiaens PI (2000) Multiple frequency fluorescence lifetime imaging microscopy. J Microsc 197:136

    Article  PubMed  CAS  Google Scholar 

  12. Kim DK, Cho ES, Um HD (2000) Caspase-dependent and independent events in apoptosis induced by hydrogen peroxide. Exp Cell Res 257:82–88

    Article  PubMed  CAS  Google Scholar 

  13. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB (1998) Cytochrome c release and caspase activation in hydrogen peroxide and tributilin induced apoptosis. FEBS Lett 429:351–355

    Article  PubMed  CAS  Google Scholar 

  14. Zurgil N, Shafran Y, Fixler D, Deutsch M (2002) Analysis of early apoptotic events in individual cells utilizing fluorescence intensity and polarization measurements. Biochem Biophys Res Commun 290:1573–1582

    Article  PubMed  CAS  Google Scholar 

  15. Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB (1985) Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 260:13844–13850

    PubMed  CAS  Google Scholar 

  16. Baraccaa A, Sgarbib G, Solainib G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. BBA - Bioenergetics 1606:137–146

    Article  Google Scholar 

  17. Fixler D, Tirosh R, Deutsch M (2005) Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay. J Biomed Opt 10:340071

    Article  Google Scholar 

  18. Fixler D, Namer Y, Yishay Y, Deutsch M (2006) Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments. IEEE Trans Biomed Eng 53:1141

    Article  PubMed  Google Scholar 

  19. Becker & Hickl GmbH, Modular FLIM Systems for Olympus Laser Scanning Microscope, Available from www.becker-hickl.com.

  20. Robbins E, Marcus PI (1963) Dynamics of acridine orange–cell interaction, Interrelationships of acridine orange particles and cytoplasmic reddening. J Cell Biol 18:237–250

    Article  PubMed  CAS  Google Scholar 

  21. Paul BK, Samanta A, Guchhait N (2010) Implication toward a simple strategy to generate efficiency-tunable fluorescence resonance energy transfer emission: intertwining medium-polarity-sensitive intramolecular charge transfer emission to fluorescence resonance energy transfer. J Phys Chem A 114:6097–6102

    Article  PubMed  CAS  Google Scholar 

  22. Lamm ME, Neville DM Jr (1965) The dimer spectrum of acridine orange hydrochloride. J Phys Chem A 69:3872–3877

    CAS  Google Scholar 

  23. Shimosaka T, Sugii T, Hobo T, Ross JBA, Uchiyama K (2000) Monitoring of dye adsorption phenomena at a silica glass/water interface with total internal reflection coupled with a thermal lens effect. Anal Chem 72:3532–3538

    Article  PubMed  CAS  Google Scholar 

  24. Zelenin AV (1966) Fluorescence microscopy of lysosomes and related structures in living cells. Nature 212:425–426

    Article  PubMed  CAS  Google Scholar 

  25. Antunes F, Cadenas E, Brunk UT (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555

    Article  PubMed  CAS  Google Scholar 

  26. Ito F, Kakiuchi T, Nagamura T (2007) Excitation energy migration of acridine orange intercalated into deoxyribonucleic acid thin films. J Phys Chem C 111:6983–6988

    Article  CAS  Google Scholar 

  27. Tomita G (1967) Fluorescence-excitation spectra of acridine orange-DNA and -RNA systems. Biophysik 4:23

    Article  PubMed  CAS  Google Scholar 

  28. Belyaeva TN, Krolenko SA, Leontieva EA, Mozhenok TP, Salova AV, Faddeeva MD (2009) Acridine orange distribution and fluorescence spectra in myoblasts and single muscle fibers. Cell and Tissue Biol 3:173–180

    Article  Google Scholar 

  29. Zelenin AV ((1999)) Acridine orange as a probe for cell and molecular biology, in fluorescent and luminescent probes for biological activity. Elsevier

  30. Kapuscinski J, Darzynkiewicz Z (1987) Interactions of acridine orange with double stranded nucleic acids. Spectral and affinity studies. J Biomol Struct Dyn 5:127–143

    PubMed  CAS  Google Scholar 

  31. Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CAM (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86:163–180

    Article  PubMed  CAS  Google Scholar 

  32. Deumié M, Lorente P, Morizon D (1995) Quantitative binding and aggregation of R123 and R6G rhodamines at the surface of DPPG and DPPS phospholipid vesicles. J Photochem Photobiol Chem 89:239–245

    Article  Google Scholar 

  33. Hu C, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnol Oceanogr 47:1261

    Google Scholar 

  34. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  PubMed  CAS  Google Scholar 

  35. Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, French PMW, Lever MJ, Sucharov LOD, Neil MAA, Juskaitis J, Wilson T (2000) Whole-field optically sectioned fluorescence lifetime imaging. Opt Lett 25:1361–1363

    Article  PubMed  CAS  Google Scholar 

  36. Yang M, Baranov E, Wang JW, Jiang P, Wang X, Sun FX, Bouvet M, Moossa AR, Penman S, Hoffman RM (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829

    Article  PubMed  CAS  Google Scholar 

  37. Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2002) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713

    Article  Google Scholar 

  38. Wang PY, Chow HH, Lai JY, Liu HL, Tsai WB (2009) Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds. J Biomed Mater Res B Appl Biomater 91B:143–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible through the Bequest of Moshe-Shimon and Judith Weisbrodt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mordechai Deutsch or Dror Fixler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namer, Y., Turgeman, L., Deutsch, M. et al. Whole-Object Fluorescence Lifetime Setup for Efficient Non-Imaging Quantitative Intracellular Fluorophore Measurements. J Fluoresc 22, 875–882 (2012). https://doi.org/10.1007/s10895-011-1025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1025-x

Keywords

Navigation