Skip to main content
Log in

Detection of Single Quantum Dots in Model Systems with Sheet Illumination Microscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Single molecule detection and tracking provides at times the only possible method to observe the interactions of low numbers of biomolecules, inlcuding DNA, receptors and signal mediating proteins in living systems. However, most existing imaging methods do not enable both high sensitivity and non-invasive imaging of large specimens. In this study we report a new setup for selective plane illumination microscopy (SPIM), which enables fast imaging and single molecule tracking with the resolution of confocal microscopy and the optical penetration beyond 300 μm. We detect and report our instrumental figures of merit, control values of fluorescence properties of single nano crystals in comparison to both standard widefield configurations, and also values of nanocrystals in multicellular “fruiting bodies” of Dictyostelium, an excellent control as a model developmental system. In the Dictyostelium , we also report some of our first tracking of single nanocrystals with SPIM. The new SPIM setup represents a new technique, which enables fast single molecule imaging and tracking in living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scherfeld D, Kahya N, Schwille P (2003) Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. Biophys J 85:3758–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schutz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  5. Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574

    Article  CAS  PubMed  Google Scholar 

  6. Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. PNAS USA 100:9280–9285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932

    Article  CAS  PubMed  Google Scholar 

  8. Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murcia MJ, Minner DE, Mustata GM, Ritchie K, Naumann CA (2008) Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces. JACS 130:15054–15062

    Article  CAS  Google Scholar 

  10. Hibino K, Watanabe TM, Kozuka J, Iwane AH, Okada T, Kataoka T, Yanagida T, Sako Y (2003) Single- and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chemphyschem 4:748–753

    Article  CAS  PubMed  Google Scholar 

  11. Skako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nature Reviews Suppl, SS1-5

  12. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  13. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  14. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  CAS  PubMed  Google Scholar 

  15. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  CAS  PubMed  Google Scholar 

  16. Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgansberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336

    Article  CAS  PubMed  Google Scholar 

  17. Ermolayev V, Friedrich M, Nozadze R, Cathomen T, Klein MA, Harms GS, Flechsig E (2009) Ultramicroscopy reveals axonal transport impairments in cortical motor neurons at prion disease. Biophys J 96:3390–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ermolayev V, Cathomen T, Merk J, Friedrich M, Hartig W, Harms GS, Klein MA, Flechsig E (2009) Impaired axonal transport in motor neurons correlates with clinical prion disease. PLoS Pathog 5:e1000558

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michel R, Steinmeyer R, Falk M, Harms GS (2007) A new detection algorithm for image analysis of single, fluorescence-labeled proteins in living cells. Microsc Res Tech 70:763–770

    Article  CAS  PubMed  Google Scholar 

  20. Steinmeyer R, Noskov A, Krasel C, Weber I, Dees C, Harms GS (2005) Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization. J Fluoresc 15:707–721

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich M, Nozadze R, Gan Q, Zelman-Femiak M, Ermolayev V, Wagner TU, Harms GS (2009) Detection of single quantum dots in model organisms with sheet illumination microscopy. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2009.10.036

  22. de Keijzer S, Serge A, van Hemert F, Lommerse PH, Lamers GE, Spaink HP, Schmidt T, Snaar-Jagalska BE (2008) A spatially restricted increase in receptor mobility is involved in directional sensing during Dictyostelium discoideum chemotaxis. J Cell Sci 121:1750–1757

    Article  PubMed  Google Scholar 

  23. Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Helmick L, Antunez de Mayolo A, Zhang Y, Cheng CM, Watkins SC, Wu C, LeDuc PR (2008) Spatiotemporal response of living cell structures in Dictyostelium discoideum with semiconductor quantum dots. Nano Lett 8:1303–1308

    Article  CAS  PubMed  Google Scholar 

  26. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  PubMed  Google Scholar 

  27. Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siedentopf H, Zsigmondy R (1903) Über sichtbarmachung und größenbestimmung ultramikroskopischer Teichen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 10:1–39

    CAS  Google Scholar 

  29. Huisken J, Stainier DY (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32:2608–2610

    Article  PubMed  Google Scholar 

  30. Williams RS, Boeckeler K, Graf R, Muller-Taubenberger A, Li Z, Isberg RR, Wessels D, Soll DR, Alexander H, Alexander S (2006) Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 12:415–424

    Article  CAS  PubMed  Google Scholar 

  31. Varnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin X, Varnai P, Csordas G, Balla A, Nagai T, Miyawaki A, Balla T, Hajnoczky G (2005) Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J Biol Chem 280:12820–12832

    Article  CAS  PubMed  Google Scholar 

  33. Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234:670–681

    Article  CAS  PubMed  Google Scholar 

  34. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ernst Stelzer and Francesco Pampaloni for critical comments regarding the optical setup. This work was supported by the German Research Foundation (DFG), grants FZ-82, GK1048, and GK1342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Harms.

Additional information

Mike Friedrich, Revaz Nozadze and Sandra de Keijzer contributed equally to this article.

Gregory S. Harms is also located at Wilkes University, Wilkes-Barre, PA, 18766, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 1850 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, M., Nozadze, R., de Keijzer, S. et al. Detection of Single Quantum Dots in Model Systems with Sheet Illumination Microscopy. J Fluoresc 28, 29–39 (2018). https://doi.org/10.1007/s10895-011-0966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0966-4

Keywords

Navigation