Skip to main content

Advertisement

Log in

New Luminescent Bioprobes Eu(lll)-phloroglucinol Derivatives and Their Spectrofluorimetric, Electrochemical Interactions with Nucleotides and DNA

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two new ligands derived from phloroglucinol 2-{[(4-methoxy benzoyl ) oxy ] } methyl benzoic acid[L1] and 2-{[(4-methyl benzoyl )oxy] methyl} benzoic acid[L2] were synthesized. The solid complex Eu(III)-L2 has been synthesised and characterized by elemental analysis ,UV and IR spectra. The reaction of Eu(III) with the two synthesized ligands has been investigated in I = 0.1 mol dm-3 p-toluene sulfonate by cyclic voltammetry and square wave voltammetry. The reaction of Eu (III)–L1 and Eu (III)–L2 binary complexes with nucleotide 5′-AMP , 5′-ADP ,5′-ATP , 5′- GMP , 5′-IMP , and 5′-CMP has been investigated using UV, fluorescence and electrochemical methods. The experimental conditions were selected such that self-association of the nucleotides and their complexes was negligibly small, that is, the monomeric complexes were studied. The interaction of the Eu(III)–L1 or L 2 solid complexes with calf-thymus DNA has been investigated by fluorescence and electrochemical methods including cyclic voltammetery(CV) ,differential pulse polarography (DPP) and square wave voltammetry (SWV) on a glassy carbon electrode. The fluorescence intensity of Eu(III)-L2 complex was enhanced with the addition of DNA. Under optimal conditions in phosphate buffer pH 7.0 at 25 °C the linear range is 3–20 μM for calf thymus DNA (CT–DNA) and the corresponding determination limit is 1.8 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wisespongpand P, Kuniyoshi M (2003) Bioactive phloroglucinols from the brown alga Zonaria diesingiana. J Appl Phycol 15:225–228

    Article  CAS  Google Scholar 

  2. Broadbent D, Mabelis RP, Spencer H (1976) C-acetylphloroglucinols from Pseudomonas fluorescens. Phytochemistry 15(11):1785

    Article  CAS  Google Scholar 

  3. Mathegka ADM, Meyer JJM, Horn MM, Drewes SE (2000) An acylated phloroglucinol with antimicrobial properties from Helichrysum caespititium. Phytochemistry 53:93–96

    Article  Google Scholar 

  4. Meyer JJ, Lall N, Mathegka ADM (2002) Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S Afr J Bot 68:90–93

    CAS  Google Scholar 

  5. Mathekga ADM (2001) Antimicrobial activity of Helichrysum species and the isolation of a new phloroglucinol from Helichrysum caespititium. Doctoral thesis at the University of Pretoria.

  6. Yamaki M, Miwa M, Ishiguro KS, Takagi S (1994) Antimicrobial activity of naturally occurring and synthetic phloroglucinols against Staphylococcus aure. Phytother Res 8:112–114

    Article  CAS  Google Scholar 

  7. Rocha L, Marston A, Potterat O, Kaplan MAC, Hostettmann K (1996) More phloroglucinols from Hypericum brasiliense. Phytochemistry 42:185–188

    Article  CAS  Google Scholar 

  8. Heilmann J, Winkelmann K, Sticher O (2003) Studies on the antioxidative activity of phloroglucinol derivatives isolated from Hypericum species. Planta Med 69:202–206

    Article  PubMed  CAS  Google Scholar 

  9. Tziveleka L, Vagias C, Roussis V (2003) Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem 3:1512–1535

    Article  PubMed  CAS  Google Scholar 

  10. Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  11. Verotta L (2003) Are acylphloroglucinols lead structures for the treatment of neurodegenerative diseases? Phytochem Rev 1:389–407

    Article  Google Scholar 

  12. Mandix K, Colding A, Elming K, Sunesen L, Shim I (1993) Ab initio investigation of phloroglucinol. Int J Quant Chem 46:159–170

    Article  CAS  Google Scholar 

  13. Spoliti M, Bencivenni L, Quirante JJ, Ramondo F (1997) Molecular conformations and harmonic force field of 1,3,5-benzenetriol molecule from ab initio and density functional theory investigations. J Mol Struct (Theochem) 390:139–148

    Article  CAS  Google Scholar 

  14. National Hygienic Standards for the Usage of Food Additives, GB (1996) Standardization Administration of China: pp 2760–1996

  15. Jayabalan M, Thomas V, Rajesh PN (2001) Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement. Biomaterials 22:2749–2757

    Article  PubMed  CAS  Google Scholar 

  16. Higuchi K, Motomizu S (1999) Flow-injection spectrophotometric determination of nitrite and nitrate in biological samples. Anal Sci 15:1

    Article  Google Scholar 

  17. Pesez M, Bartos J (1974) Colorimetric and fluorimetric methods of analysis. Dekker, New York, p 109

    Google Scholar 

  18. Buono-core GE, Marciniak B, Li H (1990) Coord Chem Rev 99:55–87

    Article  CAS  Google Scholar 

  19. Wu WN, Tang N, Yan L (2008) J Fluoresc 18:101–107

    Article  PubMed  CAS  Google Scholar 

  20. Wang QM, Yan B (2004) J Mater Chem 14:2450

    Article  CAS  Google Scholar 

  21. Edward A, Chu TY, Claude C, Sokolik I, Okamoto Y, Dorsinville R (1997) Synth Met 84:433–434

    Article  Google Scholar 

  22. Kido J, Nagai K, Okamoto Y (1993) J Alloys Compd 192:30

    Article  CAS  Google Scholar 

  23. Yu JB, Zhou L, Zhang HJ, Zheng YX, Li HR, Deng RP, Peng ZP, Li ZF (2005) Inorg Chem 44:1611

    Article  PubMed  CAS  Google Scholar 

  24. Kukhta A, Kolesnik E, Grabchev I (2006) J Fluoresc 16:375–378

    Article  PubMed  CAS  Google Scholar 

  25. Meares CF, Wensel TG (1984) Acc Chem Res 17:202

    Article  CAS  Google Scholar 

  26. Wu FB, Zhang C (2002) Anal Biochem 311:57–67

    Article  PubMed  CAS  Google Scholar 

  27. Nishioka T, Yuan J, Yamamoto Y, Sumitomo K, Wang Z, Hashino K, Hosoya C, Ikawa K, Wang G, Matsumoto K (2006) Inorg Chem 45:4088–4096

    Article  PubMed  CAS  Google Scholar 

  28. Scott LK, Horrocks WD (1992) J Inorg Biochem 46:193

    Article  Google Scholar 

  29. Niyama E, Brito HF, Cremona M, Teotonio EES, Reyes R, Birto GES, Felinto MCFC (2005) Spectrochim Acta Part A 61:2643–2649

    Article  CAS  Google Scholar 

  30. Lehn JM (1990) Angew Chem Int Ed Engl 29:1304–1319

    Article  Google Scholar 

  31. An BL, Gong ML, Li MX, Zhang JM, Cheng ZX (2005) J Fluoresc 15:613–617

    Article  PubMed  CAS  Google Scholar 

  32. Lv Y, Zhang J, Cao W, Juan JC, Zhang F, Xu Z (2007) J Photochem Photobiol A 188:155–160

    Article  CAS  Google Scholar 

  33. Meshkova SB (2000) J Fluoresc 10:333–337

    Article  CAS  Google Scholar 

  34. Wood KC, Little SR, Langer R, Hammond PT (2005) A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed 44:6704–6708

    Article  CAS  Google Scholar 

  35. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  PubMed  CAS  Google Scholar 

  36. Epstein JR, Biran I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36

    Article  CAS  Google Scholar 

  37. Zheng W, He L (2009) Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. J Am Chem Soc 131:3432–3433

    Article  PubMed  CAS  Google Scholar 

  38. Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing piomolecular interactions. Anal Chem 80:7408–7413

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Wang Y, Jin J, Wang H, Yang R, Tan W (2009) Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes. Chem Commun 665–667.

  40. Ws KN, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and nearinfrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Article  CAS  Google Scholar 

  41. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  PubMed  CAS  Google Scholar 

  42. Azab HA, Anwar ZM, Ahmed RG (2010) Pyrimidine and purine mononucleotides recognition by trivalent lanthanide complexes with N-acetyl amino acids. J Chem Eng Data 55(1):459–475

    Article  CAS  Google Scholar 

  43. Azab HA, El-Korashy SA, Anwar ZM, Hussein BHM, Khairy GM (2010) Synthesis and Fluorescence properties of Eu-anthracene-9-carboxylic acid towards N-acetyl amino acids and nucleotides in different solvents. Spectrochim Acta A Mol Biomol Spectrosc 75:21–27

    Article  PubMed  CAS  Google Scholar 

  44. Azab HA, Abd El-Gawad II, Kamel RM (2009) Ternary complexes formed by the fluorescent probe Eu (III)-9-anthracene carboxylic acid with pyrimidine and purine nucleobases. J Chem Eng Data 54:3069–3078

    Article  CAS  Google Scholar 

  45. Azab HA, El-Korashy SA, Anwar ZM, Hussein BHM, Khairy GM (2010) Eu(lll)-anthracene-9-carboxylic acid as a responsive luminescent bioprobe and its electroanalytical Interactions with N-acetyl amino acids, nucleotides and DNA. J Chem Eng Data 55:3130–3141

    Article  CAS  Google Scholar 

  46. Azab HA, Abd El-Gawad II, Kamel RM (2009) Ternary complexes formed by the fluorescent probe Eu (III)-9-anthracene carboxylic acid with pyrimidine and purine nucleobases. J Chem Eng Data 54:3069–3078

    Article  CAS  Google Scholar 

  47. Filip W, Mojmir S, Li AX, Azab HA, Bartha R, Hudson RHE (2007) A robust and convergent synthesis of dipeptides-DOTAM conjugates as chelators for lanthanide ions: new PARACEST MRI agents. Bioconjug Chem 18(5):1625–1636

    Article  CAS  Google Scholar 

  48. Orabi AS, Azab HA, ElDeghidy FS, Said H (2010) Ternary complexes of La(III), Ce(III), Pr(III) or Er(III) with adenosine 5’-mono,5’-di, and 5’-triphosphate as primary ligands and some biologically important zwitterionic buffers as secondary ligands. J Solution Chem 39:319–334

    Article  CAS  Google Scholar 

  49. Azab HA, Al-Deyab SS, Anwar ZM, Gharib RA (2011) Fluorescence and electrochemical probing of N-acetylamino acids, nucleotides and DNA by Eu(lll) -bathophenanthroline complex. J Chem Eng Data 56(4):833–849

    Article  CAS  Google Scholar 

  50. Azab HA, Al-Deyab SS, Anwar ZM, Kamel RM (2011) Potentiometric, electrochemical and fluorescence study of the coordination properties of the monomeric and dimeric complexes of Eu(lll) with nucleobases and PIPES. J Chem Eng Data 56:1960–1969

    Article  CAS  Google Scholar 

  51. Azab HA, Al-Deyab SS, Anwar ZM, Abd El-Gawad II, Kamel RM (2011) Comparison of the coordination tendency of amino acids, Nucleobases or mononucleotides towards the monomeric and dimeric lanthanide complexes with biologically important compounds. J Chem Eng Data 56:2613–2625

    Article  CAS  Google Scholar 

  52. Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3:723–728

    Article  PubMed  CAS  Google Scholar 

  53. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Ahmed Azab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azab, H.A., Anwar, Z.M., Abdel-Salam, E.T. et al. New Luminescent Bioprobes Eu(lll)-phloroglucinol Derivatives and Their Spectrofluorimetric, Electrochemical Interactions with Nucleotides and DNA. J Fluoresc 22, 223–238 (2012). https://doi.org/10.1007/s10895-011-0949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0949-5

Keywords

Navigation