Skip to main content
Log in

Fluorescence Study on the Structure of Ionic Liquid Aggregates in Aqueous Solutions

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Although ionic liquids are a relatively novel class of materials, it is well documented that they form micelles through aggregation of cation aliphatic tails. However, anion self-assembly has not yet been reported. In this study, we analyzed the intrinsic fluorescence of p-toluenesulfonate groups (tosylate) as part of the ionic liquid 1-ethyl-3-methylimidazolium tosylate ([emim][TOS]) and p-toluenesulfonic acid (pTSA), in aqueous solution. pTSA was found to have overlapping monomer and excimer emissions for chromophore concentrations from 10−3 to 1 M, whereas [emim][TOS], in the same conditions, showed monomer emission slightly broadened by much weaker excimer emission. These different photophysical behaviors of the same chromophore in the two compounds are explained by the formation of ion pairs by [emim][TOS], which can also be inferred from the loss of vibrational structure of the absorption spectra with respect to pTSA. Despite this different behavior regarding ion pairing, anion aggregation was observed in the excitation spectra of both pTSA and [emim][TOS]. While the absorption spectra corresponded to single chromophores, the excitation spectra changed from those characteristic of a single chromophore (below 10−3 M) to red-shifted narrow bands (above 0.1 M) typical of J aggregates. Between those concentrations, the excitation spectra split into blue- and red-shifted bands with relative intensities that changed with concentration as the chromophores rearranged in their clusters from head-to-head to head-to-tail aggregates. Differences between the absorption and excitation spectra were ascribed to aggregation-induced fluorescence enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, 2nd edn. VCH-Wiley, Weinhein

    Google Scholar 

  2. Dias FB, Lima JC, Horta A, Pierola IF, Maçanita AL (2002) Macromolecules 35:7082–7088

    Article  CAS  Google Scholar 

  3. Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) J Phys Chem B 111:7291–7302

    Article  PubMed  CAS  Google Scholar 

  4. Serrano B, Baselga J, Bravo J, Mikes F, Sese L, Esteban I, Pierola IF (2000) J Fluoresc 10:135–139

    Article  CAS  Google Scholar 

  5. Wang J, Wang H, Zhang Sh, Zhang H, Zhao Y (2007) J Phys Chem B 111:6181–6188

    Article  PubMed  CAS  Google Scholar 

  6. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Lopes JNC, Seddon KR, Rebelo LPN (2008) J Phys Chem B 112:8645–8650

    Article  PubMed  CAS  Google Scholar 

  7. Dong B, Gao Y, Su Y, Zheng L, Xu J, Inoue T (2010) J Phys Chem B 114:340–348

    Article  PubMed  CAS  Google Scholar 

  8. Shi L, Li N, Yan H, Gao Y, Zheng L (2011) Langmuir 27:1618–1625

    Article  PubMed  CAS  Google Scholar 

  9. Coleman S, Byrne R, Minkovska S, Dermot D (2009) J Phys Chem B 113:15589–15596

    Article  PubMed  CAS  Google Scholar 

  10. Paul A, Samanta A (2008) J Phys Chem B 112:16626–16632

    Article  PubMed  CAS  Google Scholar 

  11. Turro NJ, Pierola IF (1983) Macromolecules 16:906–910

    Article  CAS  Google Scholar 

  12. Vigil MR, Renamayor CS, Pierola I, Lima JC, Melo EC, Maçanita AL (1998) Chem Phys Lett 287:379–387

    Article  Google Scholar 

  13. Singh T, Kumar A (2008) J Phys Chem B 112:4079–4086

    Article  PubMed  CAS  Google Scholar 

  14. Paul A, Mandal PK, Samanta A (2005) Chem Phys Lett 402:375–379

    Article  CAS  Google Scholar 

  15. Zhang J, Zhang Q, Shi F, Zang Sh, Qiao B, Liu L, Ma Y, Deng Y (2008) Chem Phys Lett 461:229–234

    Article  CAS  Google Scholar 

  16. Chen XW, Liu JW, Wang JH (2011) J Phys Chem B 115:1524–1530

    Article  PubMed  Google Scholar 

  17. Domanska U, Zolek-Tryznowska Z, Krolikowski M (2007) J Chem Eng Data 52:1872–1880

    Article  CAS  Google Scholar 

  18. Aparicio S, Alcalde R, Garcia B, Leal JM (2009) J Phys Chem B 113:5593–5606

    Article  PubMed  CAS  Google Scholar 

  19. Lund M, Jagoda-Cwiklik B, Woodward CE, Vacha R, Jungwirth P (2010) J Phys Chem Lett 1:300–303

    Article  CAS  Google Scholar 

  20. Gao BR, Wang HY, Hao YW, Fu LM, Fang HH, Jiang Y, Wang L, Chen QD, Xia H, Pan LY, Ma YG, Sun HB (2010) J Phys Chem B 114:128–134

    Article  PubMed  CAS  Google Scholar 

  21. Wang M, Zhang D, Zhang G, Zhu D (2009) Chem Phys Lett 475:64–67

    Article  CAS  Google Scholar 

  22. Tang BZ, Zhan X, Yu G, Lee PPS, Liu Y, Zhu D (2001) J Mater Chem 11:2974–2978

    Article  CAS  Google Scholar 

  23. Lopez-Arbeloa F, Martinez-Martinez V, Bañuelos-Prieto J, Lopez-Arbeloa I (2002) Langmuir 18:2658–2664

    Article  CAS  Google Scholar 

  24. Das S, Bwambok D, El-Zahab B, Monk J, Rooy SL, Challa S, Li M, Hung FR, Baker GA, Warner IM (2010) Langmuir 26:12867–12876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work received financial support from the Ministerio de Ciencia e Innovación (Spain) under grant CTQ2010-16414 and from the Comunidad Autónoma de Madrid under grant S2009/ESP1691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines F. Pierola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierola, I.F., Pacios, I.E. Fluorescence Study on the Structure of Ionic Liquid Aggregates in Aqueous Solutions. J Fluoresc 22, 145–150 (2012). https://doi.org/10.1007/s10895-011-0940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0940-1

Keywords

Navigation