Skip to main content
Log in

Mathematical Representation of Fluorescence Intensity of Probes in Aqueous Binary Solvent Mixtures

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence intensities of propranolol and atenolol in binary solvent mixtures at various temperatures are measured and mathematical models are proposed to represent the fluorescence intensity data. The results showed that the proposed models are able to correlate/predict the data with reasonable error. The fluorescence intensity of pyridoxal HCl in binary solvents at 25 °C is also determined and represented by the proposed model as an additional test probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suppan P (1990) Invited review solvatochromic shifts: the influence of the medium on the energy of electronic states. J Photochem Photobiol A Chem 50:293–330

    Article  CAS  Google Scholar 

  2. Nicol MF (1974) Solvent effects on electronic spectra. Appl Spectrosc Rev 8:183–227

    Article  CAS  Google Scholar 

  3. Kohler G, Kittel G, Getoff N (1982) Decay processes of singlet excited phenol in solution. J Photochem 18:19–27

    Article  Google Scholar 

  4. Jaffo HH, Orchin M (1965) Theory and applications of ultraviolet spectroscopy. Wiley, New York, p 187

    Google Scholar 

  5. Calef DF (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer. Elsevier, Amsterdam, p 167

    Google Scholar 

  6. Doroshenko AO, Bilokin MD, Pivovarenko VG (2004) New fluorescent dye of dibenzalcyclopentanone series possessing increased solvatochromism and “energy gap law” regulated fluorescence quenching in polar solvents. J Photochem Photobiol A Chem 163:95–102

    Article  CAS  Google Scholar 

  7. Pavlovich VS (2000) Excited-state solvent dynamics and fluorescence quenching of solutions. J Lumin 87–89:592–594

    Article  Google Scholar 

  8. Kohler G, Rechthaler K (1993) Solvent effects on excited state relaxation phenomena. Pure Appl Chem 65:1647–1652

    Article  Google Scholar 

  9. Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, Weinheim

    Google Scholar 

  10. Kamlet MJ, Dickinson C, Taft RW (1981) Linear solvation energy relationships Solvent effects on some fluorescence probes. Chem Phys Lett 77:69–72

    Article  CAS  Google Scholar 

  11. Jones G II, Jackson WR, Halpern AM (1980) Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chem Phys Lett 72:391–395

    Article  CAS  Google Scholar 

  12. Acree WE Jr (1992) Mathematical representation of thermodynamic properties; Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim Acta 198:71–79

    Article  CAS  Google Scholar 

  13. Jouyban A, Chan HK, Clark BJ, Acree WE Jr (2002) Mathematical representation of apparent acid dissociation constants in aqueous-organic solvent mixtures. Int J Pharm 246:135–142

    Article  PubMed  CAS  Google Scholar 

  14. Jouyban-Gharamaleki A, Acree WE Jr (1998) Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm 167:177–182

    Article  CAS  Google Scholar 

  15. Jouyban-Gharamaleki A, Khaledi MG, Clark BJ (2000) Calculation of electrophoretic mobilities in water-organic modifier mixtures in capillary electrophoresis. J Chromatogr A 868:277–284

    Article  PubMed  CAS  Google Scholar 

  16. Jouyban A, Chan HK, Barzegar-Jalali M, Acree WE Jr (2002) A model to represent solvent effects on the chemical stability of solutes in mixed solvent systems. Int J Pharm 243:167–172

    Article  PubMed  CAS  Google Scholar 

  17. Jouyban A, Soltani S, Chan HK, Acree WE Jr (2005) Modeling acid dissociation constant of analytes in binary solvents at various temperatures using Jouyban-Acree model. Thermochim Acta 428:119–123

    Article  CAS  Google Scholar 

  18. Jouyban A, Rashidi MR, Vaez-Gharamaleki Z, Matin AA, Djozan DJ (2005) Mathematical representation of analyte’s capacity factor in binary solvent mobile phases using Jouyban-Acree model. Pharmazie 60:827–829

    PubMed  CAS  Google Scholar 

  19. Jouyban A, Soltanpour S, Chan HK (2004) A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int J Pharm 269:353–360

    Article  PubMed  CAS  Google Scholar 

  20. Jouyban A, Fathi-Azarbayjani A, Barzegar-Jalali M, Acree WE Jr (2004) Correlation of surface tension of mixed solvents with solvent composition. Pharmazie 59:937–941

    PubMed  CAS  Google Scholar 

  21. Jouyban A, Khoubnasabjafari M, Vaez-Gharamaleki Z, Fekari Z, Acree WE Jr (2005) Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model. Chem Pharm Bull 53:519–523

    Article  PubMed  CAS  Google Scholar 

  22. Jouyban A, Fathi-Azarbayjani A, Khoubnasabjafari M, Acree WE Jr (2005) Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model. Indian J Chem A 44:1553–1560

    Google Scholar 

  23. Jouyban A, Khoubnasabjafari M, Acree WE Jr (2006) Modeling the solvatochromic parameter (\( E_T^N \)) of mixed solvents with respect to solvent composition and temperature using Jouyban-Acree model. Daru 14:22–25

    Google Scholar 

  24. Jouyban A, Soltani S, Khoubnasabjafari M, Acree WE Jr (2006) Refractive index correlation of solvent mixtures at various temperatures. Asian J Chem 18:2037–2040

    CAS  Google Scholar 

  25. Hasan M, Shirude DF, Hiray AP, Sawant AB, Kadam UB (2006) Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 and 308.15 K. Fluid Phase Equilib 252:88–95

    Article  Google Scholar 

  26. Delgado DR, Martínez F, Fakhree MAA, Jouyban A (2011) Volumetric properties of the glycerol formal + water cosolvent system and correlation with the Jouyban-Acree model. Phys Chem Liq, in press

  27. Drabent R, Bryl K, Olszewska T (1997) Water environment forces retinyl palmitate to create self-organised structures. J Fluoresc 7:347–355

    Article  CAS  Google Scholar 

  28. Evale BG, Hanagodimath SM, Kulkarni MV (2010) Effect of temperature on the fluorescence emission of 2H-chromen-2-one derivative in non-polar and polar solvents. J Luminesc 130:1325–1329

    Article  CAS  Google Scholar 

  29. Jouyban A, Soltanpour Sh, Acree WE Jr, Thomas D, Agrafiotou P, Pappa-Louisi A (2009) Modeling the effects of different mobile phase compositions and temperatures on the retention of various analytes in HPLC. J Sep Sci 32:3898–3905

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Jouyban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouyban, A., Shaghaghi, M., Zoghi, E. et al. Mathematical Representation of Fluorescence Intensity of Probes in Aqueous Binary Solvent Mixtures. J Fluoresc 21, 2111–2116 (2011). https://doi.org/10.1007/s10895-011-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0911-6

Keywords

Navigation