Skip to main content
Log in

Observations of the Effect of Confined Space on Fluorescence and Diffusion Properties of Molecules in Single Conical Nanopore Channels

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, we investigated the fluorescence emission spectra and diffusion properties of dye molecules confined in different positions of conical nanopore channels using a laser scanning confocal fluorescence microscope. The results showed that a red shift of the emission spectra is observed from the tip section to the bottom section and the diffusion rate is slower in the channel than that in bulk solution, indicating a single conical nanopore channel can be used as a convenient tool for investigating the effect of confined space on the behaviors of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi Y, Baker LA, Hillebrenner H, Martin CR (2006) Biosensing with conically shaped nanopores and nanotubes. Phys Chem Chem Phys 8:4976–4988

    Article  PubMed  CAS  Google Scholar 

  2. Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. TrAC Trends Anal Chem 27:627–639

    Article  CAS  Google Scholar 

  3. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  PubMed  CAS  Google Scholar 

  4. Gardeniers HJGE (2009) Chemistry in nanochannel confinement. Anal Bioanal Chem 394:385–397

    Article  PubMed  CAS  Google Scholar 

  5. Bohrer MP, Patterson GD, Carroll PJ (1984) Hindered diffusion of dextran and ficoll in microporous membranes. Macromolecules 17:1170–1173

    Article  CAS  Google Scholar 

  6. Ladero M, Santos A, Garcia-Ochoa F (2007) Hindered diffusion of proteins and polymethacrylates in controlled-pore glass: An experimental approach. Chem Eng Sci 62:666–678

    Article  CAS  Google Scholar 

  7. Turner SWP, Cabodi M, Craighead HG (2002) Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys Rev Lett 88:128103/1–128103/4

    Article  CAS  Google Scholar 

  8. Tang J, Trahan DW, Doyle PS (2010) Coil-stretch transition of DNA molecules in slitlike confinement. Macromolecules 43:3081–3089

    Article  PubMed  CAS  Google Scholar 

  9. Reisner W, Morton KJ, Riehn R, Wang YM, Yu Z, Rosen M, Sturm JC, Chou SY, Frey E, Austin RH (2005) Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett 94:196101/1–196101/4

    Article  CAS  Google Scholar 

  10. Ulrich K, Galvosas P, Kaerger J, Grinberg F, Vernimmen J, Meynen V, Cool P. Self-assembly and diffusion of block copolymer templates in sba-15 nanochannels. J Phys Chem B 114: 4223–4229

  11. Mobius W, Frey E, Gerland U (2008) Spontaneous unknotting of a polymer confined in a nanochannel. Nano Lett 8:4518–4522

    Article  PubMed  CAS  Google Scholar 

  12. Yu B, Sun P, Chen T, Jin Q, Ding D, Li B, Shi A-C (2007) Self-assembled morphologies of diblock copolymers confined in nanochannels: Effects of confinement geometry. J Chem Phys 126:204903/1–204903/5

    CAS  Google Scholar 

  13. Sorin EJ, Pande VS (2006) Nanotube confinement denatures protein helices. J Am Chem Soc 128:6316–6317

    Article  PubMed  CAS  Google Scholar 

  14. Moorthy J, Burgess R, Yethiraj A, Beebe D (2007) Microfluidic based platform for characterization of protein interactions in hydrogel nanoenvironments. Anal Chem 79:5322–5327

    Article  PubMed  CAS  Google Scholar 

  15. Hibara A, Saito T, Kim H-B, Tokeshi M, Ooi T, Nakao M, Kitamori T (2002) Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal Chem 74:6170–6176

    Article  PubMed  CAS  Google Scholar 

  16. De Santo I, Causa F, Netti PA (2010) Subdiffusive molecular motion in nanochannels observed by fluorescence correlation spectroscopy. Anal Chem 82:997–1005

    Article  PubMed  Google Scholar 

  17. Sexton LT, Horne LP, Martin CR (2007) Developing synthetic conical nanopores for biosensing applications. Mol Biosyst 3:667–685

    Article  PubMed  CAS  Google Scholar 

  18. Gierschner J, Egelhaaf HJ, Mack HG, Oelkrug D, Alvarez RM, Hanack M (2003) Luminescence of conjugated molecules confined in nanochannels. Synth Met 137:1449–1450

    Article  CAS  Google Scholar 

  19. Kievsky Y Y, Carey B, Naik S, Mangan N, ben-Avraham D, and Sokolov I (2008) Dynamics of molecular diffusion of Rodamine 6 G in silica nanochannels. J. Chem. Phys. 128: 151102/1–151102/5.

    Google Scholar 

  20. Oh Y-J, Garcia AL, Petsev DN, Lopez GP, Brueck SRJ, Ivory CF, Han SM (2009) Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Lab Chip 9:1601–1608

    Article  PubMed  CAS  Google Scholar 

  21. Wang G, Zhang B, Wayment JR, Harris JM, White HS (2006) Electrostatic-gated transport in chemically modified glass nanopore electrodes. J Am Chem Soc 128:7679–7686

    Article  PubMed  CAS  Google Scholar 

  22. Cao X-H, Zhang L-X, Cai W-P, Li Y-Q (2010) Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode. Electrochem Commun 12:540–543

    Article  CAS  Google Scholar 

  23. Weiss AM, Saraidarov T, Reisfeld R (2001) Confocal microscopy for characterization of porous sol-gel glasses incorporating luminescent dyes. Opt Mater 16:15–20

    Article  Google Scholar 

  24. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal Chem 79:4778–4787

    Article  PubMed  CAS  Google Scholar 

  25. Zhang B, Zhang Y, White HS (2006) Steady-state voltammetric response of the nanopore electrode. Anal Chem 78:477–483

    Article  PubMed  CAS  Google Scholar 

  26. Cser A, Nagy K, Biczok L (2002) Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360:473–478

    Article  CAS  Google Scholar 

  27. Lin D-L, He L-F, Li Y-Q (2004) Rapid and simultaneous determination of coproporphyrin and protoporphyrin in feces by derivative matrix isopotential synchronous fluorescence spectrometry. Clin Chem 50:1797–803

    Article  PubMed  CAS  Google Scholar 

  28. Zhou P-C, Huang W, Zhang R-B, Zou Z-X, Luo H-D, Falih AA, Li Y-Q (2008) A simple and rapid fluorimetric method for simultaneous determination of protoporphyrin ix and zinc protoporphyrin ix in whole blood. Appl Spectrosc 62:1268–1273

    Article  PubMed  CAS  Google Scholar 

  29. Chen Z, Tang YJ, Xie TT, Chen Y, Li YQ (2008) Fluorescence spectral properties of rhodamine 6 g at the silica/water interface. J Fluoresc 18:93–100

    Article  PubMed  Google Scholar 

  30. Tang YJ, Chen Y, Yao MN, Zou ZX, Han GB, Li YQ (2008) Total internal reflection fluorescence spectroscopy for investigating the adsorption of a porphyrin at the glass/water interface in the presence of a cationic surfactant below the critical micelle concentration. J Fluoresc 18:261–267

    Article  PubMed  CAS  Google Scholar 

  31. Hungerford G, Ferreira JA (2001) The effect of the nature of retained solvent on the fluorescence of nile red incorporated in sol-gel-derived matrices. J Lumin 93:155–165

    Article  CAS  Google Scholar 

  32. Krishna MMG (1999) Excited-state kinetics of the hydrophobic probe nile red in membranes and micelles. J Phys Chem A 103:4129

    Article  CAS  Google Scholar 

  33. Datta A, Mandal D, Pal SK, Bhattacharyya K (1997) Intramolecular charge transfer processes in confined systems. Nile red in reverse micelles. J Phys Chem B 101:10221–10225

    Article  CAS  Google Scholar 

  34. Dutta AK, Kamada K, Ohta K (1996) Spectroscopic studies of nile red in organic solvents and polymers. J Photochem Photobiol A 93:57–64

    Article  CAS  Google Scholar 

  35. Stuart MCA, van de Pas JC, Engberts JBFN (2005) The use of nile red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J Phys Org Chem 18:929–934

    Article  CAS  Google Scholar 

  36. Hungerford G, Rei A, Ferreira MIC, Tregidgo C, Suhling K (2007) Molecular diffusion within sol-gel derived matrices viewed via fluorescence recovery after photobleaching. Photochem Photobiol Sci 6:825–828

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (20975084, 20575055), the National Basic Research Program of China (973Program, 2007CB935600) and the Science and technology program of Fujian Province (2009Y0046). We thank Professor Richard N. Zare for the illumination in applications of nanopores, and Professor Henry S. White and his coworkers for sharing the experience of glass nanopore fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Qun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LX., Cao, XH., Cai, WP. et al. Observations of the Effect of Confined Space on Fluorescence and Diffusion Properties of Molecules in Single Conical Nanopore Channels. J Fluoresc 21, 1865–1870 (2011). https://doi.org/10.1007/s10895-011-0881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0881-8

Keywords

Navigation