Skip to main content
Log in

An Intramolecular Charge Transfer Fluorescent Probe: Synthesis, Structure and Selective Fluorescent Sensing of Cu+2

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of substituted imidazoles have been synthesized in very good yield under solvent free condition by grinding 1,2-diketone, aromatic aldehyde and ammonium acetate in the presence of molecular iodine as the catalyst. The short reaction time, good yield and easy workup make this protocol practically and economically attractive and characterized by NMR spectra, X-ray, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy imidazoles (dpip and dptip) have been studied using emission spectroscopy and it was detected that the two distinct ground state rotamers are responsible for the normal and the tautomer emissions. DFT calculations on energy, dipole moment, charge distribution of the rotamers in the ground and excited states of the imidazole derivatives were performed and discussed. DFT analysis about HOMO, HOMO-1, LUMO and LUMO + 1 were carried out and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007) Aggregation-induced emission enhancement of 2-(2′-Hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J Phys Chem A 111:5861–5868

    CAS  Google Scholar 

  2. Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2’-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734

    Article  CAS  Google Scholar 

  3. Wu Y, Peng X, Fan J, Gao S, Tian M, Zhao J, Sun S (2007) Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer. J Org Chem 72:62–66

    Article  PubMed  CAS  Google Scholar 

  4. Das K, Sarkar N, Ghosh AK, Majumdar D, Nath DN, Bhattacharyya K (1994) Excited state intramolecular proton transfer in 2-(2’-hydroxyphenyl) benzimidazole and -benzoxazole: effect of rotamerism and hydrogen-bonding. J Phys Chem 98:9126–9132

    Article  CAS  Google Scholar 

  5. Lambardino JG, Wiseman EH (1974) Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. J Med Chem 17:1182–1188

    Article  Google Scholar 

  6. Maier T, Schmierer R, Bauer K, Bieringer H, Buerstell H, Sachse B (1989) US Patent 820335, 1989. Chem Abstr 111:19494

    Google Scholar 

  7. Lantos I, Zhang W, Shiu X, Eggleston DS (1993) Synthesis of imidazoles via hetero-cope rearrangements. J Org Chem 58:7092–7095

    Article  CAS  Google Scholar 

  8. Parveen A, Ahmed MD, Shaikh KA, Deshmukh SP, Pawar RP (2007) Efficient synthesis of 2,4,5-triaryl substituted imidazoles under solvent free conditions at room temperature. Arkivoc xvi:1218

  9. Jianwei S, Dong Y, Cao L, Wang X, Wang S, Hu YY (2004) Highly efficient chemoselective deprotection of O, O-Acetals and O, O-Ketals catalyzed by molecular iodine in acetone. J Org Chem 69:8932–8934

    Article  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian P, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT

  11. Saravanan K, Srinivasan N, Thanikachalam V, Jayabharathi J (2011) Synthesis and photophysics of some novel imidazole derivatives used as sensitive fluorescent chemisensors. J Fluoresc 21:65–80

    Google Scholar 

  12. Jayabharathi J, Thanikachalam V, Srinivasan N, Saravanan K (2010) Synthesis, structure, luminescent and Intramolecular proton transfer in some imidazole derivatives. J Fluoresc. doi:10.1007/s10895-010-0747-5

    Google Scholar 

  13. Barbara PF, Walsh PK, Brus LE (1989) Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer. J Phys Chem 93:29–34

    Article  CAS  Google Scholar 

  14. Feng K, Hsu FL, Veer DVD, Bota K, Bu XR (2004) Tuning fluorescence properties of imidazole derivatives with thiophene and thiazole. J Photochem Photobiol A Chem 165:223–228

    Article  CAS  Google Scholar 

  15. Woolfe GJ, Melzig M, Schneider S, Dörr F (1983) The role of tautomeric and rotameric species in the photophysics of 2-(2′-hydroxyphenyl) benzoxazole. Chem Phys 77:213–221

    Article  CAS  Google Scholar 

  16. Sobolewski AL (1993) The mechanism of excited-state hydrogen transfer in 2-hydroxypyridine. Chem Phys Lett 211:293–299

    Article  CAS  Google Scholar 

  17. Dogra SK (2005) Excited-state inter- and intramolecular proton transfer inmethyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations. J Lumin 114:101–117

    Article  CAS  Google Scholar 

  18. Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n, π*)−1(π, π*) inversion. J Am Chem Soc 126:8862–8863

    Article  PubMed  CAS  Google Scholar 

  19. Huang WS, Lin JT, Chien CH, Tao YT, Sun SS, Wen YS (2004) Highly phosphorescent Bis-cyclometalated Iridium complexes containing Benzimidazole-Based ligands. Chem Mater 16:2480–2488

    Article  CAS  Google Scholar 

  20. Chen CH, Shi J (1998) Metal chelates as emitting materials for organic electroluminescence. Coord Chem Rev 171:161–174

    Article  CAS  Google Scholar 

  21. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, NewYork, p 5

    Google Scholar 

  22. Padmaja L, Ravikumar C, Sajan D, Hubert Joe I, Jayakumar VS, Pettit GR, Faurskov Neilsen O (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 40:419–428

    Article  CAS  Google Scholar 

  23. Ravikumar C, Hubert Joe I, Jayakumar VS (2008) Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem Phys Lett 460:552–558

    Article  CAS  Google Scholar 

  24. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the author Dr. J. Jayabharathi, Associate professor in Chemistry, Annamalai University is thankful to Department of Science and Technology [No. SR/S1/IC-07/2007] and University Grants commission (F. No. 36-21/2008 (SR)) for providing fund to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Jayabharathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayabharathi, J., Thanikachalam, V., Srinivasan, N. et al. An Intramolecular Charge Transfer Fluorescent Probe: Synthesis, Structure and Selective Fluorescent Sensing of Cu+2 . J Fluoresc 21, 1813–1823 (2011). https://doi.org/10.1007/s10895-011-0876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0876-5

Keywords

Navigation