Skip to main content
Log in

Push-Pull Fluorophores Based on Imidazole-4,5-dicarbonitrile: A Comparison of Spectral Properties in Solution and Polymer Matrices

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Spectral properties of novel type of fluorophores consist of a π-conjugated system end-capped with an electron-donating N,N-dimethylaminophenyl group and an electron-withdrawing imidazole-4,5-dicarbonitrile moiety were examined. An additional π-linker separating these two structural units comprises simple bond (B1P), phenyl (B2B), styryl (B3S) and ethynylphenyl (B4A) moieties. The absorption and fluorescence spectra were taken in cyclohexane, chloroform, acetonitrile, methanol and in polymer matrices such as polystyrene, poly(methyl methacrylate) and poly(vinylchloride). The longest-wavelength absorption band was observed in the range of 300 to 400 nm. Intense fluorescence with quantum yields of 0.2 to 1.0 was observed in cyclohexane, chloroform and in polymer matrices within the range of 380 to 500 nm. The fluorescence was strongly quenched in neat acetonitrile and methanol. The fluorescence lifetimes are in the range of 1–4 ns for all measured fluorophores. The large Stokes shift (4,000 to 8,000 cm−1) indicates a large difference in the spatial arrangement of the chromophore in the absorbing and the emitting states. The observed fluorescence of all fluorophores in chloroform was quenched by 1-oxo-2,2,6,6-tetramethyl-4-hydroxy piperidine by the diffusion-controlled bimolecular rate (cca 2 × 1010 L mol−1 s−1). Polar solvents such as acetonitrile and methanol quenched the fluorescence as well but probably via a different mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Grabowski ZM (1993) Electron transfer in flexible molecules and molecular ions. Pure Appl Chem 65:1751–1756

    Article  CAS  Google Scholar 

  2. Safarzadeh-Amiri A (1986) A time resolved fluorescence study of dynamic stokes shift of trans-4-dimethylamino-4′-cyanostilbene. Chem Phys Lett 125:272–278

    Article  CAS  Google Scholar 

  3. Abdel-Mottaleb MSA, Loufty RO, Laouyade R (1989) Non-radiative deactivation channels of molecular rotors. J Photochem Photobiol A 48:87–93

    Article  CAS  Google Scholar 

  4. Mqadmi S, Pollet A (1990) Non-radiative deactivation of p-(N, N-dialkylamino)-benzylidenemalonitriles. J Photochem Photobiol A 53:275–281

    Article  CAS  Google Scholar 

  5. Paczkowski J, Neckers DC (1991) The nature of the ground and excited states of substituted (N,N-dialkylamino)cinnamated and benzalmalonate. J Photochem Photobiol A 62:173–181

    Article  CAS  Google Scholar 

  6. Wang SL, Ho TI (2000) Substituent effects on intramolecular charge-transfer behaviour of styrylheterocycles. J Photochem Photobiol A 135:119–126

    Article  CAS  Google Scholar 

  7. Juříček M, Kasák P, Stach M, Putala M (2007) Potential 1,1′-binaphthyl NLO-phores with extended conjugation between positions 2 and 6, and 2′ and 6′. Tetrahedron Lett 48:8869–8873

    Article  Google Scholar 

  8. Yesodha SK, Pillai ChKS, Tsutsumi N (2004) Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog Polym Sci 29:45–74

    Article  CAS  Google Scholar 

  9. Jaing G, Michinobu T, Yuan W, Feng M, Wen Y, Du S, Gao H, Jiang L, Song Y, Diederich F, Zhu D (2005) Crystalline thin fims of s donor-substituted cyanoethene for nanoscale data recording through intramolecular charge-transfer interaction. Adv Mater 17:2170–2173

    Article  Google Scholar 

  10. Haldi A, Kimyonok A, Domercq B, Hayden LE, Jones SC, Marder SR, Weck M, Kippelen B (2008) Optimization of orange-emitting electrophosphorescent copolymers for organic light emitting diodes. Adv Funct Mater 18:3056–3062

    Article  CAS  Google Scholar 

  11. Innocenzi P, Lebeau B (2005) Organic-inorganic hybrid materials for non-linear optics. J Mater Chem 15:3821–3831

    Article  CAS  Google Scholar 

  12. Cho MJ, Choi DH, Sullivan PA, Akelaitis APJ, Dalton LR (2008) Recent progress in second non-linear polymer and dendrimers. Prog Polym Sci 33:1013–1058

    Article  CAS  Google Scholar 

  13. Ma H, Lui S, Luo J, Sures S, Lui I, Kang SH, Haller M, Sassa T, Dalton LR, Jen AK-Y (2002) Higly efficient and thermally stable electro-optical polymers and dendrimers. Adv Funct Mater 12:565–574

    Article  CAS  Google Scholar 

  14. Kivala M, Boudon C, Gisselbrecht CJP, Seiler P, Gross M, Diederich F (2007) Charge transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. Angew Chem Int Ed 46:6357–6360

    Article  CAS  Google Scholar 

  15. Patel A, Bureš F, Ludwig M, Kulhánek J, Pytela O, Růžička A (2009) Novel charge-transfer chromophores featuring imidazole as π-linkage. Heterocycles 78:999–1013

    Article  CAS  Google Scholar 

  16. Kulhánek J, Bureš F, Pytela O, Mikysek T, Ludvík J, Růžička A (2010) Push-pull molecules with a systemalically extended π-conjugated system featuring 4,5-dicyanoimidazole. Dyes Pigm 85:57–65

    Article  Google Scholar 

  17. Bureš F, Kulhánek J, Mikysek T, Ludvík J, Lokaj J (2010) Branched charge-transfer chromophores featuring a 4,5-dicyanoimidazole unit. Tetrahedron Lett 51:2055–2058

    Article  Google Scholar 

  18. Birks JB (1968) Photophysics of aromatic molecules, Willey-Interscience a Division of John Wiley and Sons Ltd, New York, London, Toronto, Sidney, Ch 4.: 121–127

  19. Kawski A, Kubicki A, Kuklinski B, Gryczynski I (1993) Unusual absorption and fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene in poly(vinyl alcohol) film. J Photochem Photobiol A 71:161–167

    Article  CAS  Google Scholar 

  20. Demas JN, Adamson AW (1971) Evaluation of photoluminescence lifetimes. J Phys Chem 57:2463

    Google Scholar 

  21. Demas JN (1973) Excited state lifetime measurements. Appendix E, Academic Press, New York, p 245

    Google Scholar 

  22. Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134:371–378, http://www.joerg-enderlein.de/fluo/fluo.html

    Article  CAS  Google Scholar 

  23. Bureš F, Schweizer WB, May JC, Boudon C, Gisselbrecht J-P, Gross M, Biaggio I, Diederich F (2007) Property tuning in charge-transfer chromophores by systematic modulation of the space between donor and acceptor. Chem Eur J 13:5378–5387

    Article  Google Scholar 

  24. Hrobarikova V, Hrobarik P, Gajdos P, Fitilis I, Fakis M, Persephonis P, Zahradnik P (2010) Benzothiazole-based fluorophores of donor-π-acceptor-π-donor type displaying high two-photon absorption. J Org Chem 75:3053–3068

    Article  PubMed  CAS  Google Scholar 

  25. Morimoto A, Yatsuhashi T, Shimada T, Biczók L, Tryk DA, Inoue H (2001) Radiationless deactivation of intramolecular charge transfer excited state through hydrogen bonding: effect of molecular structure and hard-soft anionic character in the excited state. J Phys Chem A 105:10488–10496

    Article  Google Scholar 

Download references

Acknowledgement

M. Danko and P. Hrdlovic thank grant agency VEGA for support of the project 2/0097/09. J. Kulhanek and F. Bures thank to the Czech Science Foundation (203/08/0076) and the Ministry of Education, Youth and Sport of the Czech Republic (MSM 0021627501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Danko.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplement Fig. 1S

Absorption and fluorescence spectra of B2B in chloroform (CHCl3), cyclohexane (Cy) and methanol (MeOH) at 10−5 mol L−1 and PVC at 0.002 mol kg−1. (DOC 517 kb)

Supplement Fig. 2S

Absorption and fluorescence spectra of B3S in chloroform (CHCl3), cyclohexane (Cy) and acetonitrile (Ac) at 10−5 mol L−1 and PVC at 0.002 mol kg−1. (DOC 542 kb)

Supplement Fig. 3S

Absorption and fluorescence spectra of B4A in chloroform (CHCl3), cyclohexane (Cy) and methanol (MeOH) at 10−5 mol L−1 and PS at 0.002 mol kg−1. (DOC 503 kb)

Supplement Fig. 4S

Stern-Volmer plot fluorescence quench for compound B3S in chloroform caused by 2,4-dinitrotoluene. After correction to screening effect KSV = 40.5 L mol−1, A: 0.929, R: 0.920. (DOC 82 kb)

Supplement Fig. 5S

Effects of addition of methanol (MeOH) and acetonitrile (Ac) on the fluorescence of B3S and B4A in chloroform. (DOC 103 kb)

Supplement Fig. 6S

Fluorescence maxima shift for B2B in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 90 kb)

Supplement Fig. 7S

Fluorescence maxima shift for B3S in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 89 kb)

Supplement Fig. 8S

Fluorescence maxima shift for B4A in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danko, M., Hrdlovič, P., Kulhánek, J. et al. Push-Pull Fluorophores Based on Imidazole-4,5-dicarbonitrile: A Comparison of Spectral Properties in Solution and Polymer Matrices. J Fluoresc 21, 1779–1787 (2011). https://doi.org/10.1007/s10895-011-0872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0872-9

Keywords

Navigation