Journal of Fluorescence

, Volume 21, Issue 4, pp 1779–1787 | Cite as

Push-Pull Fluorophores Based on Imidazole-4,5-dicarbonitrile: A Comparison of Spectral Properties in Solution and Polymer Matrices

  • Martin Danko
  • Pavol Hrdlovič
  • Jiří Kulhánek
  • Filip Bureš
Original Paper

Abstract

Spectral properties of novel type of fluorophores consist of a π-conjugated system end-capped with an electron-donating N,N-dimethylaminophenyl group and an electron-withdrawing imidazole-4,5-dicarbonitrile moiety were examined. An additional π-linker separating these two structural units comprises simple bond (B1P), phenyl (B2B), styryl (B3S) and ethynylphenyl (B4A) moieties. The absorption and fluorescence spectra were taken in cyclohexane, chloroform, acetonitrile, methanol and in polymer matrices such as polystyrene, poly(methyl methacrylate) and poly(vinylchloride). The longest-wavelength absorption band was observed in the range of 300 to 400 nm. Intense fluorescence with quantum yields of 0.2 to 1.0 was observed in cyclohexane, chloroform and in polymer matrices within the range of 380 to 500 nm. The fluorescence was strongly quenched in neat acetonitrile and methanol. The fluorescence lifetimes are in the range of 1–4 ns for all measured fluorophores. The large Stokes shift (4,000 to 8,000 cm−1) indicates a large difference in the spatial arrangement of the chromophore in the absorbing and the emitting states. The observed fluorescence of all fluorophores in chloroform was quenched by 1-oxo-2,2,6,6-tetramethyl-4-hydroxy piperidine by the diffusion-controlled bimolecular rate (cca 2 × 1010 L mol−1 s−1). Polar solvents such as acetonitrile and methanol quenched the fluorescence as well but probably via a different mechanism.

Keywords

Fluorescence Push-pull Imidazol-3,4-dicarbonitrile Polymer matrices 

Supplementary material

10895_2011_872_MOESM1_ESM.doc (518 kb)
Supplement Fig. 1SAbsorption and fluorescence spectra of B2B in chloroform (CHCl3), cyclohexane (Cy) and methanol (MeOH) at 10−5 mol L−1 and PVC at 0.002 mol kg−1. (DOC 517 kb)
10895_2011_872_MOESM2_ESM.doc (542 kb)
Supplement Fig. 2SAbsorption and fluorescence spectra of B3S in chloroform (CHCl3), cyclohexane (Cy) and acetonitrile (Ac) at 10−5 mol L−1 and PVC at 0.002 mol kg−1. (DOC 542 kb)
10895_2011_872_MOESM3_ESM.doc (503 kb)
Supplement Fig. 3SAbsorption and fluorescence spectra of B4A in chloroform (CHCl3), cyclohexane (Cy) and methanol (MeOH) at 10−5 mol L−1 and PS at 0.002 mol kg−1. (DOC 503 kb)
10895_2011_872_MOESM4_ESM.doc (82 kb)
Supplement Fig. 4SStern-Volmer plot fluorescence quench for compound B3S in chloroform caused by 2,4-dinitrotoluene. After correction to screening effect KSV = 40.5 L mol−1, A: 0.929, R: 0.920. (DOC 82 kb)
10895_2011_872_MOESM5_ESM.doc (104 kb)
Supplement Fig. 5SEffects of addition of methanol (MeOH) and acetonitrile (Ac) on the fluorescence of B3S and B4A in chloroform. (DOC 103 kb)
10895_2011_872_MOESM6_ESM.doc (90 kb)
Supplement Fig. 6SFluorescence maxima shift for B2B in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 90 kb)
10895_2011_872_MOESM7_ESM.doc (90 kb)
Supplement Fig. 7SFluorescence maxima shift for B3S in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 89 kb)
10895_2011_872_MOESM8_ESM.doc (92 kb)
Supplement Fig. 8SFluorescence maxima shift for B4A in chloroform upon addition of methanol (MeOH) and acetonitril (Ac). (DOC 92 kb)

References

  1. 1.
    Grabowski ZM (1993) Electron transfer in flexible molecules and molecular ions. Pure Appl Chem 65:1751–1756CrossRefGoogle Scholar
  2. 2.
    Safarzadeh-Amiri A (1986) A time resolved fluorescence study of dynamic stokes shift of trans-4-dimethylamino-4′-cyanostilbene. Chem Phys Lett 125:272–278CrossRefGoogle Scholar
  3. 3.
    Abdel-Mottaleb MSA, Loufty RO, Laouyade R (1989) Non-radiative deactivation channels of molecular rotors. J Photochem Photobiol A 48:87–93CrossRefGoogle Scholar
  4. 4.
    Mqadmi S, Pollet A (1990) Non-radiative deactivation of p-(N, N-dialkylamino)-benzylidenemalonitriles. J Photochem Photobiol A 53:275–281CrossRefGoogle Scholar
  5. 5.
    Paczkowski J, Neckers DC (1991) The nature of the ground and excited states of substituted (N,N-dialkylamino)cinnamated and benzalmalonate. J Photochem Photobiol A 62:173–181CrossRefGoogle Scholar
  6. 6.
    Wang SL, Ho TI (2000) Substituent effects on intramolecular charge-transfer behaviour of styrylheterocycles. J Photochem Photobiol A 135:119–126CrossRefGoogle Scholar
  7. 7.
    Juříček M, Kasák P, Stach M, Putala M (2007) Potential 1,1′-binaphthyl NLO-phores with extended conjugation between positions 2 and 6, and 2′ and 6′. Tetrahedron Lett 48:8869–8873CrossRefGoogle Scholar
  8. 8.
    Yesodha SK, Pillai ChKS, Tsutsumi N (2004) Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog Polym Sci 29:45–74CrossRefGoogle Scholar
  9. 9.
    Jaing G, Michinobu T, Yuan W, Feng M, Wen Y, Du S, Gao H, Jiang L, Song Y, Diederich F, Zhu D (2005) Crystalline thin fims of s donor-substituted cyanoethene for nanoscale data recording through intramolecular charge-transfer interaction. Adv Mater 17:2170–2173CrossRefGoogle Scholar
  10. 10.
    Haldi A, Kimyonok A, Domercq B, Hayden LE, Jones SC, Marder SR, Weck M, Kippelen B (2008) Optimization of orange-emitting electrophosphorescent copolymers for organic light emitting diodes. Adv Funct Mater 18:3056–3062CrossRefGoogle Scholar
  11. 11.
    Innocenzi P, Lebeau B (2005) Organic-inorganic hybrid materials for non-linear optics. J Mater Chem 15:3821–3831CrossRefGoogle Scholar
  12. 12.
    Cho MJ, Choi DH, Sullivan PA, Akelaitis APJ, Dalton LR (2008) Recent progress in second non-linear polymer and dendrimers. Prog Polym Sci 33:1013–1058CrossRefGoogle Scholar
  13. 13.
    Ma H, Lui S, Luo J, Sures S, Lui I, Kang SH, Haller M, Sassa T, Dalton LR, Jen AK-Y (2002) Higly efficient and thermally stable electro-optical polymers and dendrimers. Adv Funct Mater 12:565–574CrossRefGoogle Scholar
  14. 14.
    Kivala M, Boudon C, Gisselbrecht CJP, Seiler P, Gross M, Diederich F (2007) Charge transfer chromophores by cycloaddition-retro-electrocyclization: multivalent systems and cascade reactions. Angew Chem Int Ed 46:6357–6360CrossRefGoogle Scholar
  15. 15.
    Patel A, Bureš F, Ludwig M, Kulhánek J, Pytela O, Růžička A (2009) Novel charge-transfer chromophores featuring imidazole as π-linkage. Heterocycles 78:999–1013CrossRefGoogle Scholar
  16. 16.
    Kulhánek J, Bureš F, Pytela O, Mikysek T, Ludvík J, Růžička A (2010) Push-pull molecules with a systemalically extended π-conjugated system featuring 4,5-dicyanoimidazole. Dyes Pigm 85:57–65CrossRefGoogle Scholar
  17. 17.
    Bureš F, Kulhánek J, Mikysek T, Ludvík J, Lokaj J (2010) Branched charge-transfer chromophores featuring a 4,5-dicyanoimidazole unit. Tetrahedron Lett 51:2055–2058CrossRefGoogle Scholar
  18. 18.
    Birks JB (1968) Photophysics of aromatic molecules, Willey-Interscience a Division of John Wiley and Sons Ltd, New York, London, Toronto, Sidney, Ch 4.: 121–127Google Scholar
  19. 19.
    Kawski A, Kubicki A, Kuklinski B, Gryczynski I (1993) Unusual absorption and fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene in poly(vinyl alcohol) film. J Photochem Photobiol A 71:161–167CrossRefGoogle Scholar
  20. 20.
    Demas JN, Adamson AW (1971) Evaluation of photoluminescence lifetimes. J Phys Chem 57:2463Google Scholar
  21. 21.
    Demas JN (1973) Excited state lifetime measurements. Appendix E, Academic Press, New York, p 245Google Scholar
  22. 22.
    Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134:371–378, http://www.joerg-enderlein.de/fluo/fluo.html CrossRefGoogle Scholar
  23. 23.
    Bureš F, Schweizer WB, May JC, Boudon C, Gisselbrecht J-P, Gross M, Biaggio I, Diederich F (2007) Property tuning in charge-transfer chromophores by systematic modulation of the space between donor and acceptor. Chem Eur J 13:5378–5387CrossRefGoogle Scholar
  24. 24.
    Hrobarikova V, Hrobarik P, Gajdos P, Fitilis I, Fakis M, Persephonis P, Zahradnik P (2010) Benzothiazole-based fluorophores of donor-π-acceptor-π-donor type displaying high two-photon absorption. J Org Chem 75:3053–3068PubMedCrossRefGoogle Scholar
  25. 25.
    Morimoto A, Yatsuhashi T, Shimada T, Biczók L, Tryk DA, Inoue H (2001) Radiationless deactivation of intramolecular charge transfer excited state through hydrogen bonding: effect of molecular structure and hard-soft anionic character in the excited state. J Phys Chem A 105:10488–10496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Danko
    • 1
  • Pavol Hrdlovič
    • 1
  • Jiří Kulhánek
    • 2
  • Filip Bureš
    • 2
  1. 1.Department of Photochemistry of Polymers Slovak Academy of SciencesPolymer Institute, Center of Excellence GLYCOMEDBratislavaSlovakia
  2. 2.Institute of Organic Chemistry and Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations