Skip to main content

Fluorescence Imaging of Stem Cells, Cancer Cells and Semi-Thin Sections of Tissues using Silica-Coated CdSe Quantum Dots


Trioctylphosphine oxide capped cadmium selenide quantum dots, synthesized in organic media were rendered water soluble by silica overcoating. Silanisation was done by a simple reverse microemulsion method using aminopropyl silane as the silica precursor. Further, the strong photoluminescence of the silica-coated CdSe quantum dots has been utilized to visualize rabbit adipose tissue-derived mesenchymal stem cells (RADMSCs) and Daltons lymphoma ascites (DLA) cancerous cells in vitro. Subsequently the in vivo fluorescence behaviours of QDs in the tissues were also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence microscopic images in the stem cells, cancer cells and semi-thin sections of mice organs proved the strong luminescence property of silica-coated quantum dots under biological systems. These results establish silica-coated CdSe QDs as extremely useful tools for molecular imaging and cell tracking to study the cell division and metastasis of cancer and other diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  2. 2.

    Jaiswal JK, Mattoussi H, Mauro JM Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–33

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Lidke DS, Nagy P, Heintzmann R, Jovin DJA, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor mediated signal transduction. Nat Biotechnol 22(2):198–203

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bonasio R, Carman CV, Kim E, Sage PT, Love KR, Mempel TR, Springer TA, von Andrian UH (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and Quantum dots. Proc Natl Acad Sci USA 104(37):14753–14758

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885

    Article  CAS  Google Scholar 

  6. 6.

    Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302(3):496–501

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13:386–396

    PubMed  Article  Google Scholar 

  8. 8.

    Parungo CP, Colson YL, Kim SW Kim S, Cohn LH, Bawendi MG, Frangioni JV (2005) Sentinel lymph node mapping of the pleural space. Chest 127:1799–1804

    PubMed  Article  Google Scholar 

  9. 9.

    Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent Quantum dots. Ann Thorac Surg 79:269–277

    PubMed  Article  Google Scholar 

  10. 10.

    Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, Chen FY, Colson YL, Cohn LH, Bawendi MG, Frangioni JV (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850

    PubMed  Article  Google Scholar 

  11. 11.

    Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image- guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681

    PubMed  Article  Google Scholar 

  12. 12.

    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II Quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL (2007) Simultaneous multi- color imaging of five different lymphatic basins using quantum dots. Nano Lett 7:1711–1716

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103:23–28

    PubMed  Article  Google Scholar 

  15. 15.

    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Knapp DW, Adams LG, Degrand AM, Niles JD, Ramos-Vara JA, Weil AB, O’Donnell MA, Lucroy MD, Frangioni JV (2007) Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 52:1700–1708

    PubMed  Article  Google Scholar 

  17. 17.

    Peng XA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Vinayakan R, Shanmugapriya T, Nair PV, Ramamurthy P, Thomas KG (2007) An approach for optimizing the shell thickness of core-shell quantum dots using photoinduced charge transfer. J Phys Chem C 111:10146–10149

    Article  CAS  Google Scholar 

  19. 19.

    Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46:2448–2452

    Article  CAS  Google Scholar 

  20. 20.

    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Gu W, Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Alivisatos AP, Larabell CA (2007) Measuring cell motility using quantum dot probes. Methods Mol Bio 374:125–132

    Google Scholar 

  22. 22.

    Pic E, Pons T, Bezdetnaya L, Leroux A, Guillemin F, Dubertret B, Marcha F (2009) Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol Imaging Biol 12:394–405

    PubMed  Article  Google Scholar 

  23. 23.

    Vibin M, Vinayakan R, John A, Raji V, Rejiya CS, Abraham A (2010) Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots. Biol Trace Elem Res. doi:10.1007/s12011-010-8763-5 [Epub ahead of print]

    PubMed  Google Scholar 

  24. 24.

    Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, non-toxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832

    Article  CAS  Google Scholar 

  25. 25.

    Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y (2009) A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir 25:12250–12255

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Bakalova R, Zhelev Z, Aoki I, Ohba H, Imai Y, Kanno I (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal Chem 78:5925–5932

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64

    PubMed  Article  CAS  Google Scholar 

Download references


We gratefully acknowledge the Department of Biotechnology, Ministry of Science and Technology, Govt. of India, New Delhi, for the financial assistance as research grant (Order No.BT/PR9904/ NNT/28/63/2007) given to Dr. Annie Abraham, Principal Investigator, DBT project; Dr. K. George Thomas, Scientist, National Institute of Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India for supplying nanomaterials; UGC, Govt. of India for the research fellowship to Vinayakan R.

Author information



Corresponding author

Correspondence to Annie Abraham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vibin, M., Vinayakan, R., John, A. et al. Fluorescence Imaging of Stem Cells, Cancer Cells and Semi-Thin Sections of Tissues using Silica-Coated CdSe Quantum Dots. J Fluoresc 21, 1365–1370 (2011).

Download citation


  • DLA cells
  • Luminescence
  • Quantum dots
  • Semi-thin section