Skip to main content
Log in

“Triple Observation Method (TOM)” to Discriminate Optically Autofluorescence from Porphyrins Versus that from Copper-Metallothioneins

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We propose a conclusive difference observed between the excitation conditions required to observe porphyrins and copper-metallothioneins in cells and/or tissues using an ordinary fluorescence microscope. We have emphasized the importance of examining the spectral properties of the emissions to avoid any serious mistakes such as confusing porphyrins with copper-metallothioneins in the liver and kidneys. However, microspectrophotometry is not a conventional method for either histochemical, cytochemical, or pathological studies because microspectrophotometers are both expensive and difficult to operate. Therefore, we demonstrate a simple comparative method using ordinary excitation filter arrangements. When using our technique, it becomes possible to optically discriminate more accurately between the autofluorescence properties arising from porphyrins and those arising from copper-metallothioneins. We would like to name our simple technique “Triple Observation Method (TOM)”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  PubMed  CAS  Google Scholar 

  2. Lundvall O, Enerbäck L (1969) Hepatic fluorescence in porphyria cutanea tarda studied in fine needle aspiration biopsy smears. J Clin Pathol 22:704–709

    Article  PubMed  CAS  Google Scholar 

  3. Gouterman M (1978) In: Dolphin D (ed) The porphyrins, vol. III. Academic, New York, pp 1–165

    Google Scholar 

  4. Lamola AA (1982) Fluorescence studies of protoporphyrin. Acta Derm Venereol Suppl 100:57–66

    CAS  Google Scholar 

  5. Udagawa M, Horie Y, Hirayama C (1984) Aberrant porphyrin metabolism in hepatocellular carcinoma. Biochem Med 31:131–139

    Article  PubMed  CAS  Google Scholar 

  6. Larralde C, Sassa S, Vanderkooi JM, Koloczek H, Laclette JP, Goodsaid F, Sciutto E, Owen CS (1987) Analysis of porphyrins and enzymes in porphyrins synthesis in Taenia solium cysticercus from man and pig. Mol Biochem Parasitol 22:203–213

    Article  PubMed  CAS  Google Scholar 

  7. Polo CF, Frisardi AL, Resnik ER, Schoua AEM, Batlle AMC (1988) Factors influencing fluorescence spectra of free porphyrins. Clin Chem 34:757–760

    PubMed  CAS  Google Scholar 

  8. Sassaroli M, De Costa R, Väänänen H, Eisinger J, Poh-Fitzpatrick MB (1992) Distribution of erythrocyte free porphyrin content in erythropoietic protoporphyria. J Lab Clin Med 120:614–622

    PubMed  CAS  Google Scholar 

  9. Nordberg M, Kojima Y (1979) In: Kägi JHR, Nordberg M (eds) Metallothionein. Birkhäuser Verlag, Basel

    Google Scholar 

  10. Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III: Biological roles and medical implications. Birkhäuser Verlag, Berlin, pp 29–56

    Google Scholar 

  11. Beltramini M, Lerch K (1981) Luminescence properties of Neurospora copper metallothionein. FEBS Lett 127:201–203

    Article  PubMed  CAS  Google Scholar 

  12. Stillman MJ, Gasyna Z (1991) Luminescence spectroscopy of metallothioneins. Methods Enzymol 205:540–555

    Article  PubMed  CAS  Google Scholar 

  13. Stillman MJ (1992) In: Stillman MJ, Show CF III, Suzuki KT (eds) Metallothioneins. VCH, New York, pp 55–127

    Google Scholar 

  14. Nakayama K, Okabe M, Aoyagi K, Yamanoshita O, Okui T, Ohyama T, Kasai N (1996) Visualization of yellowish-orange luminescence from cuprous metallothioneins in liver of Long-Evans Cinnamon rat. Biochim Biophys Acta 1289:150–158

    PubMed  Google Scholar 

  15. Okabe M, Nakayama K, Kurasaki M, Yamasaki F, Aoyagi K, Yamanoshita O, Sato S, Okui T, Ohyama T, Kasai N (1996) Direct visualization of copper-metallothionein in LEC rat kidneys: application of auto-fluorescence signal of copper-thiolate cluster. J Histochem Cytochem 44:865–873

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki KT (1995) Disordered copper metabolism in LEC rats, an animal model of Wilson disease: roles of metallothionein. Res Commun Mole Pathol Pharmacol 89:221–240

    CAS  Google Scholar 

  17. Nakayama K, Takasawa A, Ohyama T, Tamura M (1998) Abnormal accumulation of porphyrin derivatives in the kidneys of Long-Evans Cinnamon rats, as evidenced by microspectrophotometry. Biochem Biophys Res Commun 242:164–169

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama K, Takasawa A, Terai I, Okui T, Ohyama T, Tamura M (2000) Spontaneous porphyria of the Long-Evans Cinnamon rat: an animal model of Wilson’s disease. Arch Biochem Biophys 375:240–250

    Article  PubMed  CAS  Google Scholar 

  19. Nakayama K, Tamura M (2010) What is the true origin of the bright red-orange autofluorescence in the hepatocytes? Hepatology 51:1083–1084

    PubMed  Google Scholar 

  20. Quaglia A, Mustafa A, Mitry RR, Portmann B (2009) Image of the month: copper-metallothionein autofluorescence. Hepatology 50:1312–1313

    Article  PubMed  Google Scholar 

  21. Kemmner W, Wan K, Rüttinger S, Ebert B, Macdonald R, Klamm U, Moesta KT (2008) Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB J 22:500–509

    Article  PubMed  CAS  Google Scholar 

  22. Hait-Darshan R, Babushkin T, Malik Z (2009) Regulation of heme synthesis and proteasomal activity by copper: possible implications for Wilson’s disease. J Environ Pathol Toxicol Oncol 28:209–221

    PubMed  CAS  Google Scholar 

  23. Ferenci P, Caca K, Loudianos G, Mieli-Vergani G, Tanner S, Sternlieb I, Schilsky M, Cox D, Berr F (2003) Diagnosis and phenotypic classification of Wilson disease. Liver Int 23:139–142

    Article  PubMed  Google Scholar 

  24. Katoh Y, Nakayama K, Adachi N, Suzuki T, Ichihara N, Tamura M, Honma H, Sawada Y (2006) Familial genetic analysis of copper transporting P-type ATPase (ATP7B) gene in Wilson’s disease. Biomed Res Trace Elements 17:406–411

    CAS  Google Scholar 

  25. Bugbee D, Davies L, Kenney S, Cox DW (2009) Wilson disease mutation database, University of Alberta, http://www.wilsondisease.med.ualberta.ca/database.asp. Updated July 10, 2009. Accessed August 12, 2010

Download references

Acknowledgements

This study was supported by grants-in-aid for Scientific Research from the Japan Society for the Promotion of Science (19590658). We are indebted to Drs. M. Kubota (Department of Pediatrics, Hokkaido University Graduate School of Medicine), K. Jin (Hokkaido Institute of Public Heath) and T. Okui (School of Veterinary Medicine, Rakuno Gakuen University) for their support during this study. We are grateful to our colleagues, especially Mrs. F. Takenaka and H. Mikami for their helpful animal management.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nakayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, K., Katoh, Y. & Tamura, M. “Triple Observation Method (TOM)” to Discriminate Optically Autofluorescence from Porphyrins Versus that from Copper-Metallothioneins. J Fluoresc 21, 835–839 (2011). https://doi.org/10.1007/s10895-010-0773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0773-3

Keywords

Navigation