Journal of Fluorescence

, Volume 21, Issue 2, pp 793–801 | Cite as

Folate Conjugated CdHgTe Quantum Dots with High Targeting Affinity and Sensitivity for In vivo Early Tumor Diagnosis

  • Haiyan Chen
  • Li Li
  • Sisi Cui
  • Dider Mahounga
  • Jun Zhang
  • Yueqing Gu
Original Paper

Abstract

CdHgTe-folate conjugates, acting as novel active-targeting fluorescence probes, were prepared by covalent conjugation of CdHgTe QDs and folic acid. Their characteristics, such as optical spectra, stability and cancer cell targeting were investigated in detail. The fluorescence wavelength of CdHgTe-folate conjugates was 790 nm and a full width at half-maximum (FWHM) of them was 50–70 nm. Their fluorescence stability could satisfy the need of long and continuous fluorescence imaging. The in vivo dynamic bio-distribution of CdHgTe-folate conjugates in S180 tumor beard mouse model was monitored by a NIR imaging system. The resultes indicated that CdHgTe-folate conjugates targeted to tumor effectively. The high fluorescence intensity together with targeting effect makes CdHgTe-folate conjugates promising candidates for imaging, monitoring and early diagnosis of cancer at molecular and cell level.

Keywords

CdHgTe Folate Near infrared imaging Cancer Targeting 

References

  1. 1.
    Fottner C, Mettler E, Goetz M, Schirrmacher E, Anlauf M, Strand D, Schirrmacher R, Klöppel G, Delaney P, Schreckenberger M, Galle PR, Neurath MF, Kiesslich R, Weber MM (2010) In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy. Endocrinology 151(5):2179–2188PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang J, Jia X, Lv XJ, Deng YL, Xie HY (2010) Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta 81(1–2):505–509PubMedCrossRefGoogle Scholar
  3. 3.
    Davis SC, Samkoe KS, O’Hara JA, Gibbs-Strauss SL, Payne HL, Hoopes PJ, Paulsen KD, Pogue BW (2010) MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors. Acad Radiol 17(3):271–276PubMedCrossRefGoogle Scholar
  4. 4.
    Do W, Hwang HY, Ko JH, Lee HK, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105CrossRefGoogle Scholar
  5. 5.
    Ma J, Fan Q, Wang L, Jia N, Gu Z, Shen H (2010) Synthesis of magnetic and fluorescent bifunctional nanocomposites and their applications in detection of lung cancer cells in humans. Talanta 81(4–5):1162–1169PubMedCrossRefGoogle Scholar
  6. 6.
    Boeneman K, Delehanty JB, Susumu K, Stewart MH, Medintz IL (2010) Intracellular bioconjugation of targeted proteins with semiconductor quantum dots. J Am Chem Soc 132(17):5975–5977PubMedCrossRefGoogle Scholar
  7. 7.
    Hikage M, Gonda K, Takeda M, Kamei T, Kobayashi M, Kumasaka M, Watanabe M, Satomi S, Ohuchi N (2010) Nano-imaging of the lymph network structure with quantum dots. Nanotechnology 21(18):185103–185110PubMedCrossRefGoogle Scholar
  8. 8.
    Lim YT, Noh YW, Cho JH, Han JH, Choi BS, Kwon J, Hong KS, Gokarna A, Cho YH, Chung BH (2009) Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J Am Chem Soc 131(47):17145–17154PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang CY, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82(5):1921–1927PubMedCrossRefGoogle Scholar
  10. 10.
    Xu H, Peng J, Tang HW, Li Y, Wu QS, Zhang ZL, Zhou G, Chen C, Li Y (2009) Hadamard transform spectral microscopy for single cell imaging using organic and quantum dot fluorescent probes. Analyst 134(3):504–511PubMedCrossRefGoogle Scholar
  11. 11.
    Pan J, Liu Y, Feng SS (2010) Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine (Lond) 5(3):347–360CrossRefGoogle Scholar
  12. 12.
    Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21(4):604–609PubMedCrossRefGoogle Scholar
  13. 13.
    Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7(1):94–104PubMedCrossRefGoogle Scholar
  14. 14.
    Hwang SY, Cho do Y, Kim HK, Cho SH, Choo J, Yoon WJ, Lee EK (2010) Preparation of targeting proteoliposome by postinsertion of a linker molecule conjugated with recombinant human epidermal growth factor. Bioconjug Chem 21(2):345–351PubMedCrossRefGoogle Scholar
  15. 15.
    Chrastina A, Valadon P, Massey KA, Schnitzer JE (2010) Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J Vasc Res 47(6):531–543PubMedCrossRefGoogle Scholar
  16. 16.
    Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265PubMedCrossRefGoogle Scholar
  17. 17.
    Kamen BA, Capdevila A (1986) Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci 83:5983–5987PubMedCrossRefGoogle Scholar
  18. 18.
    Ke JH, Lin JJ, Carey JR, Chen JS, Chen CY, Wang LF (2010) A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging. Biomaterials 31(7):1707–1715PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang J, Deng D, Qian Z, Liu F, Chen X, An L, Gu Y (2010) The targeting behavior of folate-nanohydrogel evaluated by near infrared imaging system in tumor-bearing mouse model. Pharm Res 27(1):46–55PubMedCrossRefGoogle Scholar
  20. 20.
    Fan L, Li F, Zhang H, Wang Y, Cheng C, Li X, Gu CH, Yang Q, Wu H, Zhang S (2010) Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 31(21):5634–5642PubMedCrossRefGoogle Scholar
  21. 21.
    Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100(2):247–256PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544PubMedCrossRefGoogle Scholar
  23. 23.
    Liu F, Deng D, Chen X, Qian Z, Achilefu S, Gu Y (2010) Folate-polyethylene glycol conjugated near-infrared fluorescence probe with high targeting affinity and sensitivity for in vivo early tumor diagnosis. Mol Imaging Biol Apr 8. [Epub ahead of print]Google Scholar
  24. 24.
    Gu B, Xie C, Zhu J, He W, Lu W (2010) Folate-PEG-CKK(2)-DTPA, a potential carrier for lymph-metastasized tumor targeting. Pharm Res 27(5):933–942PubMedCrossRefGoogle Scholar
  25. 25.
    Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol 624:249–265PubMedCrossRefGoogle Scholar
  26. 26.
    Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5):055103–055109PubMedCrossRefGoogle Scholar
  27. 27.
    Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102–385111CrossRefGoogle Scholar
  28. 28.
    Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y (2008) Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J Fluoresc 18(15):801–811PubMedCrossRefGoogle Scholar
  29. 29.
    Liu L, Zhang J, Su X, Mason PP (2008) Mason in vitro and in vivo assessment of CdTe and CdHgTe toxicity and clearance. J Biomed Nanotechnol 24(4):524–528CrossRefGoogle Scholar
  30. 30.
    Cai WB, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676PubMedCrossRefGoogle Scholar
  31. 31.
    Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99(20):12617–12621PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Haiyan Chen
    • 1
  • Li Li
    • 2
  • Sisi Cui
    • 1
  • Dider Mahounga
    • 1
  • Jun Zhang
    • 1
  • Yueqing Gu
    • 1
    • 3
  1. 1.Department of Biomedical Engineering, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
  2. 2.XinXiang College of Chemistry and Chemical EngineeringXinxiang UniversityXinXiang CityChina
  3. 3.China Pharmaceutical UniversityNanjingChina

Personalised recommendations