Skip to main content
Log in

Hydroxy and Methoxy Substituted Thiacarbocyanines for Fluorescent Detection of Amyloid Formations

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In present paper series of trimethine cyanines modified in 5,5′- or 6,6′- position with hydroxy- or methoxy- substituents is studied for their ability to interact selectively with fibrillar formations. Processes of dye aggregation that accompany this interaction were also investigated. Meso-methyl trimethynecyanines with 5,5′- methoxy (7519) and hydroxy (7515) substituents strongly (up to 40 times) increase fluorescence intensity in the presence of fibrillar insulin, and also give noticeable fluorescent response on the presence of various aggregated proteins (lysozyme, β-lactoglobulin, α-synuclein A53T). 7519 and 7515 dyes can be used for fluorometric detection of fibrillar insulin at concentrations of approximately 1.5–120 microg/ml. For meso-ethyl substituted dye 7514 the ability to form H- and J-aggregates upon interaction with insulin fibrils was suggested. The model of the H- and J-aggregate packing in the protein fibrillar structure has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agorogiannis EI, Agorogiannis GI, Papadimitriou A, Hadjigeorgiou GM (2004) Protein misfolding in neurodegenerative diseases. Neuropathol Appl Neurobiol 30:215–224

    Article  PubMed  CAS  Google Scholar 

  2. Cohen FE (1999) Protein misfolding and prion diseases. J Mol Biol 293:313–320

    Article  PubMed  CAS  Google Scholar 

  3. Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909

    Article  PubMed  CAS  Google Scholar 

  4. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  5. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  6. Harper JD, Lansbury PT (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    Article  PubMed  CAS  Google Scholar 

  7. McLaurin J, Yang DS, Yip CM, Fraser PE (2000) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. J Struct Biol 130:259–270

    Article  PubMed  CAS  Google Scholar 

  8. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, Thioflavin T1. Anal Biochem 177:244–249

    Article  PubMed  CAS  Google Scholar 

  9. LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–409

    Article  PubMed  CAS  Google Scholar 

  10. Foguel D, Suarez MC, Ferrao-Gonzales AD, Porto TC, Palmieri L, Einsiedler CM, Andrade LR, Lashuel HA, Lansbury PT, Kelly JW, Silva JL (2003) Dissociation of amyloid fibrils of α-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 100:9831–9836

    Article  PubMed  CAS  Google Scholar 

  11. Volkova KD, Kovalska VB, Yarmoluk SM (2007) Modern techniques for protein detection on polyacrylamide gels: problems arising from the use of dyes of undisclosed structures for scientific purposes. Biotech Histochem 82(4–5):201–208

    Article  PubMed  CAS  Google Scholar 

  12. Yarmoluk SM, Kovalska VB, Lukashov SS, Slominskii YL (1999) Interaction of cyanine dyes with nucleic acids. XII. β-substituted carbocyanines as possible fluorescent probes for nucleic acids detection. Bioorg Med Chem Lett 9(12):1677–1678

    Article  PubMed  CAS  Google Scholar 

  13. Haugland RP (2005) The handbook: A guide to fluorescent probes and labeling technologies, 10th edn. Eugene, OR

    Google Scholar 

  14. Volkova KD, Kovalska VB, Balanda AO, Vermeij RJ, Subramaniam V, Slominskii YuL, Yarmoluk SM (2007) Cyanine dye–protein interactions: looking for fluorescent probes for amyloid structures. J Biochem Biophys Meth 70:727–733

    Article  PubMed  CAS  Google Scholar 

  15. Volkova KD, Kovalska VB, Balanda AO, Slominskii YuL, Tolmachev OI, Subramaniam V, Yarmoluk SM (2008) Studies of mono- and trimethine cyanine dyes as specific fluorescent probes for fibrillar β-lactoglobulin detection. Ukr Bioorg Acta 6(2):15–21

    CAS  Google Scholar 

  16. Volkova KD, Kovalska VB, Inshin D, Slominskii YL, Tolmachev OI, Yarmoluk SM (2010) Novel fluorescent trimethine cyanine dye 7519 for amyloid fibril inhibition assay. Biotechnic & Histochemistry Early Online, 1–4

  17. Levkoev II, Sveshnikov NN, Heifetz SA (1946) Research in area of cyanine dyes. Zh Obshch Khim 16(9):1489–1494

    CAS  Google Scholar 

  18. Kiprianov AI, Dashevskaya BI (1949) Cyanine dyes from isomeric 2-methylhydroxybenzotiazoles. Zh Obshch Khim 19(6):1158–1166

    CAS  Google Scholar 

  19. Volkova KD, Kovalska VB, Segers-Nolten GM, Veldhuis G, Subramaniam V, Yarmoluk SM (2009) Explorations of the application of cyanine dyes for quantitative α-synuclein detection. Biotech Histochem 84(2):55–61

    Article  PubMed  CAS  Google Scholar 

  20. Arnaudov N, deVries R, Ippel H, vanMierlo CPM (2003) Multiple steps during the formation of β-lactoglobulin fibrils. Biomacromolecules 4:1614–1622

    Article  PubMed  CAS  Google Scholar 

  21. Crystal AS, Giasson BI, Crowe A, Kung MP, Zhuang ZP, Trojanowski JQ, Lee VMY (2003) A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J Neurochem 86(6):1359–1368

    Article  PubMed  CAS  Google Scholar 

  22. Ahn JS, Lee JH, Kim JH, Paik SR (2007) Novel method for quantitative determination of amyloid fibrils of alpha-synuclein and amyloid beta/A4 protein by using resveratrol. Anal Biochem 367(2):259–265

    Article  PubMed  CAS  Google Scholar 

  23. Ogul’chansky TYu, Yashchuk VM, Losytskyy MYu, Kocheshev IO, Yarmoluk SM (2000) Interaction of cyanine dyes with nucleic acids. XVII. Towards an aggregation of cyanine dyes in solutions as a factor facilitating nucleic acid detection. Spectrochim Acta A 56(4):805–814

    Article  Google Scholar 

  24. Ogul’chansky TYu, Losytskyy MYu, Kovalska VB, Yashchuk VM, Yarmoluk SM (2001) Interactions of cyanine dyes with nucleic acids. XXIV. Aggregation of monomethine cyanine dyes in presence of DNA and its manifestation in absorption and fluorescence spectra. Spectrochim Acta A Mol Biomol Spectrosc 57(7):1525–1532

    Article  PubMed  Google Scholar 

  25. Losytskyy MYu, Yashchuk VM, Lukashov SS, Yarmoluk SM (2002) Davydov splitting in spectra of cyanine dye J-aggregates, formed on the polynucleotide. J Fluoresc 12(1):109–112

    Article  Google Scholar 

  26. Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55–71

    Article  PubMed  CAS  Google Scholar 

  27. Krebs MRH, Bromley EHC, Donald AM (2005) The binding of thioflavin T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a STCU-NASU grant №4936. We are grateful for Professor Vinod Subramaniam (University of Twente, the Netherlands) for providing monomeric and fibrillar alpha-synuclein mutant A53T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslava B. Kovalska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkova, K.D., Kovalska, V.B., Losytskyy, M.Y. et al. Hydroxy and Methoxy Substituted Thiacarbocyanines for Fluorescent Detection of Amyloid Formations. J Fluoresc 21, 775–784 (2011). https://doi.org/10.1007/s10895-010-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0770-6

Keywords

Navigation