Journal of Fluorescence

, Volume 21, Issue 2, pp 765–773 | Cite as

In Situ Monitoring the Photolysis of Fluoranthene Adsorbed on Mangrove Leaves Using Fiber-Optic Fluorimetry

  • Li Chen
  • Ping Wang
  • Jianbin Liu
  • Beibei Liu
  • Yong ZhangEmail author
  • Shuzhen Zhang
  • Yongguan Zhu
Original Paper


A newly established fiber-optic fluorimetry was used to determine the fluoranthene (Fla) adsorbed on the leaf surfaces of three mangrove species, such as Excoecarla agallocha (Ea), Kandelia candel (Kc) and Aegiceras corniculatum (Ac). With the method, the photolysis of Fla adsorbed on Ea, Kc and Ac leaf surfaces was studied. Under the laboratory conditions, using a high pressure mercury lamp as light source, photolysis was found to be the main transformation pathway for the Fla adsorbed on the three mangrove leaves, whereas disappearance of the adsorbed Fla as a result of volatilization and absorption could be negligible. The photolysis of Fla adsorbed on the three mangrove leaf surfaces followed first-order kinetics with photolysis rates of Fla in the order of Ac > Ea > Kc. The photolysis half lives of Fla adsorbed on the leaves were from 14.32 min to 69.31 min. The different initial concentrations of Fla adsorbed on the selected mangrove leaves did not affect the photolysis rates of Fla. The absorption characteristics of leaf-wax played an important role to influence the different photolysis rates of Fla adsorbed on these three mangrove species.


Fiber-optic fluorimetry In situ Photolysis Fluoranthene Mangrove leaf surface 



The authors wish to acknowledge financial support provided by the NSFC (20777062), NSFC (Innovative research group science fund, 40821063), SRFDP (200803840015) and State Key Lab of Environ. Chem. and Ecotoxico., Chinese Academy of Sciences(KF2010-15). Professor John Hodgkiss of the University of Hong Kong is thanked for assistance with English.


  1. 1.
    Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26(7):1278–1284CrossRefGoogle Scholar
  2. 2.
    Orecchio S (2010) Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a natural reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. J Hazard Mater 173(1–3):358–368PubMedCrossRefGoogle Scholar
  3. 3.
    Buehler SS, Basu I, Hites RA (2001) A comparison of PAH, PCB, and pesticide concentrations in air at two rural sites on lake superior. Environ Sci Technol 35(12):2417–2422PubMedCrossRefGoogle Scholar
  4. 4.
    Ghosh U, Zimmerman JR, Luthy RG (2003) PCB and PAH Speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol 37(10):2209–2217PubMedCrossRefGoogle Scholar
  5. 5.
    Chana YT, Lee JF, Huna CH (2007) PAH biodegradation in surfactant-water systems based on the theory of cohesive energy density (CED). J Chem Technol Biotechnol 82(5):442–452CrossRefGoogle Scholar
  6. 6.
    Wang Y, Chen JW, Li F, Qin H, Qiao XL, Hao C (2009) Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere 76(7):999–1005PubMedCrossRefGoogle Scholar
  7. 7.
    Huovinen PS, Soimasuo MR, Oikari AO (2001) Photoinduced toxicity of retene to Daphnia magna under enhanced UV-B radiation. Chemosphere 45(4–5):683–691PubMedCrossRefGoogle Scholar
  8. 8.
    Dittmar T, Koch BP (2006) Thermogenic organic matter dissolved in the abyssal ocean. Mar Chem 102(3–4):208–217CrossRefGoogle Scholar
  9. 9.
    Mahajan TB, Elsila JE, Deamer DW, Zare RN (2003) Photochemical alkylation of polycyclic aromatic hydrocarbons: possible role in kerogen formation. Orig Life Evol Biosph 33(1):17–35PubMedCrossRefGoogle Scholar
  10. 10.
    Zepp RG, Schlotzhauer PF (1979) Polynuclear aromatic hydrocarbons. Ann Arbor Science Publishers Inc, Ann ArborGoogle Scholar
  11. 11.
    Paterson S, Mackay D, McFarlane C (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28(13):2259–2266CrossRefGoogle Scholar
  12. 12.
    Barber JL, Thomas GO, Kerstiens G, Jones KC (2004) Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environ Pollut 128(1–2):99–138PubMedCrossRefGoogle Scholar
  13. 13.
    Lead WA, Steinnes E, Jones KC (1996) Atmospheric deposition of PCBs to moss (Hylocomium splendens) in Norway between 1977 and 1990. Environ Sci Technol 30(12):524–530CrossRefGoogle Scholar
  14. 14.
    Smith KEC, Thomas GO, Jones KC (2001) Seasonal and species differences in the air-pasture transfer of PAHs. Environ Sci Technol 35(11):2156–2165PubMedCrossRefGoogle Scholar
  15. 15.
    Staci LS, Ronald AH (1994) Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28(5):939–943CrossRefGoogle Scholar
  16. 16.
    Bernard D, Pascaline H, Jeremie JJ (1999) Distribution and origin of hydrocarbons in sediments from lagoons with fringing mangrove communities. Mar Pollut Bull 32(10):734–739CrossRefGoogle Scholar
  17. 17.
    Simonich SL, Hites A (1994) Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370(6484):49–51CrossRefGoogle Scholar
  18. 18.
    Lehto KM, Vuorimaa E, Lemmetyine H (2000) Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. J Photochem Photobiol A Chem 136(1–2):53–60CrossRefGoogle Scholar
  19. 19.
    Sabate J, Bayona JM, Solanas AM (2001) Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere 44(2):119–124PubMedCrossRefGoogle Scholar
  20. 20.
    Niu JF, Sun P, Schramm KW (2007) Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. J Photochem Photobiol A Chem 186(1):93–98CrossRefGoogle Scholar
  21. 21.
    Schemer H, Linden KG (2007) Aqueous photodegradation and toxicity of the polycyclic aromatic hydrocarbons fluorene, dibenzofuran, and dibenzothiophene. Water Res 41(4):853–861CrossRefGoogle Scholar
  22. 22.
    Schuler F, Schmid P, Schlatter CH (1997) Photodegradation of polychlorinated dibenzo-P- dioxins and dibenzofurans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere 36(1):21–34CrossRefGoogle Scholar
  23. 23.
    Reyes CA, Medina M, Crespo-Hernandez C, Cedeno MZ, Arce R, Rosario O, Steffenson DM, Lvanov LN, Sigman ME, Dabestani R (2000) Photochemistry of pyrene on unactivated and activated silica surfaces. Environ Sci Technol 34(19):415–421CrossRefGoogle Scholar
  24. 24.
    Niu JF, Chen JW, Martens D, Quan X, Yang FL, Kettrup A, Schramm KW (2003) Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation. Environ Pollut 123(1):39–45PubMedCrossRefGoogle Scholar
  25. 25.
    Niu JF, Chen JW, Martens D, Henkelmann B, Quan X, Yang FL, Seidlitzd HK, Schramm KW (2004) The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles. Sci Total Environ 322(1–3):231–241PubMedGoogle Scholar
  26. 26.
    Wang DG, Chen JW, Xu Z, Qiao XL, Huang LP (2005) Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [Pinua thunbergii] needles under irradiation of sunlight: Volatilization and photolysis. Atmos Environ 39(25):4583–4591CrossRefGoogle Scholar
  27. 27.
    Wang P, Du KZ, Zhu YX, Zhang Y (2008) A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves. Talanta 76(5):1177–1182PubMedCrossRefGoogle Scholar
  28. 28.
    Du KZ, Zhu YX, Wang P, Zhang Y (2009) Determination of anthracene adsorbed on Avicennia marina and Bruguiera gymnorrhiza leaves by solid surface fluorimetry, Chinese. J Anal Lab 28(4):81–83Google Scholar
  29. 29.
    Chen L, Wang P, Liu BB, Zhang Y (2009) Determination of fluoranthene adsorbed on the surfaces of mangrove leaves by fiber optical fluorimetry. Chinese J Instrumental Anal 28(11):1299–1303Google Scholar
  30. 30.
    Niessner R, Panne U, Schroeder H (1991) Fiber-optic sensor for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence. Anal Chim Acta 255(2):231–243CrossRefGoogle Scholar
  31. 31.
    Rogers KR, Poziomek EJ (1996) Fiber optic sensors for environmental monitoring. Chemosphere 33(6):1151–1174CrossRefGoogle Scholar
  32. 32.
    Panne U, Niessner R (1993) A fiber-optical sensor for polynuclear aromatic hydrocarbons based on multidimensional fluorescence. Sens Actuators B Chem 13(1–3):288–292CrossRefGoogle Scholar
  33. 33.
    Wolfbeis OS (1991) Fiber optic chemical sensors and biosensors. CRC, USGoogle Scholar
  34. 34.
    Chen L, Liu BB, Zhang Y (2010) In situ simultaneous determination the photolysis of multi-component PAHs adsorbed on the leaf surfaces of living Kandelia candel seedlings. Talanta Accepted manuscript (unedited version) available online: 24-SEP-2010Google Scholar
  35. 35.
    Price CE (1982) A review of the factors influencing the penetration of pesticides through plant leaves. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic, New YorkGoogle Scholar
  36. 36.
    Halle AT, Drncova D, Richard C (2006) Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ Sci Technol 40(9):2989–2995PubMedCrossRefGoogle Scholar
  37. 37.
    Edward W, John D, Thomas GO, Jones KC (2005) Real-time visualization and quantification of PAH photodegradation on and within plant leaves. Environ Sci Technol 39(1):268–273CrossRefGoogle Scholar
  38. 38.
    John TB, Michael ES, Reza D (1996) Photochemical oxidation of phenanthrene sorbed on silica gel. Environ Sci Technol 30(5):1776–1780CrossRefGoogle Scholar
  39. 39.
    Kerstiens G (1996) The plant cuticle: an integrated functional approach. Bios Scientific Publishers, OxfordGoogle Scholar
  40. 40.
    Solovchenko A, Merzlyak M (2003) Optical properties and contribution of cuticle to UV protection in plants. Photochem Photobiol Sci 2(8):861–866PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Li Chen
    • 1
  • Ping Wang
    • 2
  • Jianbin Liu
    • 1
  • Beibei Liu
    • 1
  • Yong Zhang
    • 1
    Email author
  • Shuzhen Zhang
    • 3
  • Yongguan Zhu
    • 3
  1. 1.State Key Laboratory of Marine Environmental Science, Environmental Science Research CenterXiamen UniversityXiamenPeople’s Republic of China
  2. 2.School of Environmental Science and Public HealthWenzhou Medical CollegeWenzhouPeople’s Republic of China
  3. 3.Research Center for Eco-environmental ScienceChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations