Skip to main content
Log in

The Contribution of Raman Scattering to the Fluorescence of the Polyene Antibiotic Amphotericin B

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence has recently been applied to the analysis of the molecular organization state of the polyene antibiotic amphotericin B (AmB) in solution or in lipid membranes. The polyene chain of AmB monomer gives rise to two fluorescence emissions; S1(21Ag) → S0(11Ag) between 500 and 700 nm, S2(11Bu) → S0(11Ag) between 400 and 500 nm. However, Raman scattering might interfere with the S2 → S0 emission fluorescence due to the weak fluorescence quantum yield and close proximity to the exciting lines. In fact, we show here that a change in the excitation wavelength results in a shift of three emission bands, an effect which excludes their assignment to fluorescence. These bands originate from the water Raman at 3382 cm-1and AmB resonance Raman at 1556 and 1153 cm-1. As a consequence, some former conclusions on the molecular organization state of AmB should be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Gruszecki WI, Gagos M, Herec M (2003) Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J Photochem Photobiol, B Biol 69:49–57

    Article  CAS  Google Scholar 

  2. Bolard J, Chéron M (2003) Does fluorescence spectroscopy detect dimers of the polyene antibiotic amphotericin B? J Photochem Photobiol, B Biol 72:101–102

    Article  CAS  Google Scholar 

  3. Gruszecki WI, Herec M (2003) Dimers of polyene antibiotic amphotericin B. J Photochem Photobiol, B Biol 72:103–105

    Article  CAS  Google Scholar 

  4. Stoodley R, Wasan KM, Bizzotto D (2007) Fluorescence of amphotericin B-deoxycholate (Fungizone) monomers and aggregates and the effect of heat-treatment. Langmuir 23:8718–8725

    Article  PubMed  CAS  Google Scholar 

  5. Bolard J, Cleary JD, Kramer RE (2009) Evidence that impurities contribute to the fluorescence of the polyene antibiotic amphotericin B. J Antimicrob Chemother 63:921–927

    Article  PubMed  CAS  Google Scholar 

  6. Selvam S, Mishra AK (2008) Disaggregation of amphotericin B by sodium deoxycholate micellar aggregates. J Photochem Photobiol, B Biol 93:66–70

    Article  CAS  Google Scholar 

  7. Gagos M, Herec M, Arczewska M, Czernel G, Dalla Serra M, Gruszecki WI (2008) Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: implications for the biological action. Biophys Chemist 136:44–49

    Article  CAS  Google Scholar 

  8. Gruszecki WI, Luchowski R, Gagos M, Arczewska M, Sarkar P, Herec M, Mysliwa-Kurdziel B, Strzalka K, Gryczynski I, Gryczynski Z (2009) Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophys Chemist 143:95–101

    Article  CAS  Google Scholar 

  9. Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. J Am Chem Soc 95(14):4493–4501

    Article  PubMed  CAS  Google Scholar 

  10. Dupont G, Rinnert H, Lematre J (1977) Etude physicochimique de l’amphotéricine B en milieu alcalin par diffusion Rayleigh, dichroïsme circulaire et absorption. C R Acad Sci 284:853–856

    CAS  Google Scholar 

  11. Belkheroubi-Sari L, Boucherit Z, Chéron M, Boucherit K, Benyoucef M, Belbraouet S (2008) Modulation of the polyene antibiotic amphotericin B selective toxicity by pH change of the stock-solution. Afr J Microbiol Res 2:242–246

    Google Scholar 

  12. Cleary JD, Chapman SW, Swiatlo E, Kramer RE (2007) High purity amphotericin B. J Antimicrob Chemother 60:1331–1340

    Article  PubMed  CAS  Google Scholar 

  13. Franck HA, Josue JS, Bautista JA, van der Hoef I, Jansen F, Lugtenburg J, Wiederrecht G, Christensen RL (2002) Spectroscopic and photochemical properties of open-chain carotenoids. J Phys Chem B 106:2083–2092

    Article  Google Scholar 

  14. Snyder R, Arvidson E, Foote C, Harrigan L, Christensen RL (1985) Electronic energy levels in long polyenes: S2 → S0 emission in all-trans-1, 3, 5, 7, 9, 11, 13-tetradecaheptaene. J Am Chem Soc 107(14):4117–4122

    Article  CAS  Google Scholar 

  15. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. KluwerAcademic/Plenum Press, New York

    Google Scholar 

  16. Ridente Y, Aubard J, Bolard J (1996) Surface-enhanced resonance Raman and circular dichroism spectra of amphotericin B and its methylester derivative in silver colloidal solutions. Biospectroscopy 2:1–8

    Article  CAS  Google Scholar 

  17. Wirth MJ, Chou SH (1988) Comparison of time and frequency domain methods for rejecting fluorescence from Raman spectra. Anal Chem 60(18):1882–1886

    Article  CAS  Google Scholar 

  18. Bolard J (1986) How do the polyene macrolide antibiotic affect the cellular membrane properties? Biochim Biophys Acta 864:257–304

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bolard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolard, J., Chéron, M., Cleary, J.D. et al. The Contribution of Raman Scattering to the Fluorescence of the Polyene Antibiotic Amphotericin B. J Fluoresc 21, 831–834 (2011). https://doi.org/10.1007/s10895-010-0768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0768-0

Keywords

Navigation