Skip to main content
Log in

A Novel Fluorescent Cesium Ion-Selective Optode Membrane based on 15-Crown-5-Anthracene

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An optode system based on a plasticized polymer membrane containing cesium ion-selective fluoroionophore and lipophilic anions for the determination of cesium ions has been developed. In this work, 15-crown-5 derivative including anthracene was used as a fluoroionophore. Emission intensity of the optode membrane incorporating 15-crown-5-anthracene was measured at 500 nm with excitation at 360 nm in the presence of Tris-HCl buffer solution. Under optimum experimental condition, the relative fluorescence intensity was linear with the concentration of cesium ion in the range of 1.0 × 10-4 M to 1.0 × 10-1 M and the detection limit was obtained 4.2 × 10-5 M, as defined by LOD = 3 × Sb/m (where Sb=standard deviation of blank signal and, m=slope of the calibration curve). The effect of pH of sample solution on the fluorescent response, the selectivity, response time and reproducibility of the optode membrane were also discussed. The fluorescent optode system shows a high selectivity and sensitivity for cesium ion with respect to other cations such as K+, Na+ and Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanui H, Pace N (1968) Chemical and ionization interferences in the atomic absorption spectrophotometric measurement of sodium, potassium, rubidium, and cesium. Anal Biochem 25:330–346

    Article  PubMed  CAS  Google Scholar 

  2. Bermejo-Barrera P, Beceiro-Gonzalez E, Bermejo-Barrera A, Martinez FB (1989) Determination of cesium in mineral and thermal waters by electrothermal atomic absorption spectrophotometry. Microchem J 40:103–108

    Article  CAS  Google Scholar 

  3. Chekalin NV, Marunkov AG, Pavlutskaya VI, Bachin SV (1991) Determination of traces of Cs, Li and Rb in rocks by laser enhanced ionization spectrometry without preconcentration. Spectrochim Acta B 46:551–558

    Article  Google Scholar 

  4. Shamaev VI, Chudinovskich TV (1982) Determination of cesium in seawater by radiochemical methods. Anal Chim Acta 139:177–186

    Article  CAS  Google Scholar 

  5. Theimer KH, Krivan V (1990) Determination of uranium, thorium, and 18 other elements in high-purity molybdenum by radiochemical neutron activation analysis. Anal Chem 62:2722–2727

    Article  CAS  Google Scholar 

  6. Renterghem DV, Cornelis R, Vanholder R (1992) Radiochemical determination of twelve trace elements in human blood serum. Anal Chim Acta 257:1–5

    Article  Google Scholar 

  7. Saleh MB (1998) New cesium ion-selective electrodes based on anilino-(1, 3-dioxo-2-indanylidene) acetonitrile derivatives. Talanta 46:885–895

    Article  PubMed  CAS  Google Scholar 

  8. Jeon SW, Yeo HK, Lee HK, Ko SW, Nam KC (2004) Novel Cesium-Selective Electrodes Based on Lipophilic 1, 3-Bisbridged Cofacial-calix[6]crowns. Electroanalysis 16:472–477

    Article  CAS  Google Scholar 

  9. Peper S, Gonczy C, Runde W (2005) Cs+-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres. Talanta 67:713–717

    Article  PubMed  CAS  Google Scholar 

  10. Oh HJ, Choi EM, Jeong HS, Nam KC, Jeon SW (2000) Poly(vinyl chloride) membrane cesium ion-selective electrodes based on lipophilic calix[6]arene tetraester derivatives. Talanta 53:535–542

    Article  PubMed  CAS  Google Scholar 

  11. Bereczki R, Csokai V, Grün A, Bitter I, Tóth K (2006) Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes. Anal Chim Acta 569:42–49

    Article  CAS  Google Scholar 

  12. Seiler K (1993) Ion-selective optode membrane. Fluka Chemie, CH-9470 Buchs

  13. Yang X, Wang K, Xiao D, Guo C, Xu Y (2000) Development of a fluorescent optode membrane for sodium ion based on the calix[4]arene and tetraphenylporphine. Talanta 52:1033–1039

    Article  PubMed  CAS  Google Scholar 

  14. Ensafi AA, Fouladgar M (2009) A sensitive and selective bulk optode for determination of Hg(II) based on hexathiacyclooctadecane and chromoionophore V. Sens Actuators B 136:326–331

    Article  Google Scholar 

  15. Kurihara K, Ohtsu M, Yoshida T, Abe T, Hisamoto H, Suzuki K (2001) Micrometer-sized lithium ion-selective microoptodes based on a “tailed” neutral ionophore and a fluorescent anionic dye. Anal Chim Acta 426:11–18

    Article  CAS  Google Scholar 

  16. Zeng H, Dureault B (1998) Cesium-selective optode membrane based on the lipophilic calix[4]biscrown in the 1, 3-alternate conformation. Talanta 46:1485–1491

    Article  PubMed  CAS  Google Scholar 

  17. Murkovic I, Oehme I, Mohr GJ, Ferber T, Wolfbeis OS (1995) Optode Membrane for Continuous Measurement of Silver Ions. Mikrochim Acta 121:249–258

    Article  CAS  Google Scholar 

  18. Shamsipur M, Hosseini M, Alizadeh K, Alizadeh N, Yari A, Caltagirone C, Lippolis V (2005) Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12]aneNS2O) for selective subnanomolar detection of Hg(II) ions. Anal Chim Acta 533:17–24

    Article  CAS  Google Scholar 

  19. Benco JS, Nienaber HA, McGimpsey WG (2002) A sodium ion sensor based on a covalently-linked aminorhodamine B-calix[4]arene chromoionophore. Sens Actuators B 85:126–130

    Article  Google Scholar 

  20. Ertekin K, Tepe M, Yenigül B, Akkaya EU, Henden E (2002) Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix. Talanta 58:719–727

    Article  PubMed  CAS  Google Scholar 

  21. Shamsipur M, Sadeghi M, Alizadeh K, Sharghi H, Khalifeh R (2008) An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl)methyl]-5, 6, 7, 8, 9, 10-hexahydro-2 H–1, 13, 4, 7, 10 benzodioxatriazacyclopentadecine-3, 11(4 H, 12 H)-dione as a novel fluoroionophore for determination of cobalt(II) ions. Anal Chim Acta 630:57–66

    PubMed  CAS  Google Scholar 

  22. Shamsipur M, Poursaberi T, Avanes A, Sharghi H (2006) Copper(II)-selective fluorimetric bulk optode membrane based on a 1-hydroxy-9, 10-anthraquinone derivative having two propenyl arms as a neutral fluorogenic ionophore. Spectrochim Acta Part A 63:43–48

    Article  Google Scholar 

  23. Shamsipur M, Poursaberi T, Karami AR, Hosseini M, Momeni A, Alizadeh N, Yousefi M, Ganjali MR (2004) Development of a new fluorimetric bulk optode membrane based on 2, 5-thiophenylbis(5-tert-butyl-1, 3-benzexazole) for nickel(II) ions. Anal Chim Acta 501:55–60

    Article  CAS  Google Scholar 

  24. Ooyama Y, Egawa H, Yoshida K (2009) The design of a novel fluorescent PET sensor for proton and water: A phenylaminonaphtho[1, 2-d]oxazol-2-yl-type fluorophore containing proton donor and acceptor groups. Dyes and Pigments 82:58–64

    Article  CAS  Google Scholar 

  25. Gunnlaugsson T, Bichell B, Nolan C (2004) Fluorescent PET chemosensors for lithium. Tetrahedron 60:5799–5806

    Article  CAS  Google Scholar 

  26. de Silva AP, Sandanayake KRAS (1991) Fluorescent PET (photoinduced electron transfer) sensors for alkali cations: optimization of sensor action by variation of structure and solvent. Tetrahedron Lett 32:421–424

    Article  Google Scholar 

  27. de Silva AP, Gunaratne HQN, McCoy CP (1993) A molecular photoionic AND gate based on fluorescent signaling. Nature 364:42–44

    Article  Google Scholar 

  28. de Silva AP, Gunaratne HQN, McCoy CP (1997) Molecular Photoionic AND Logic Gates with Bright Fluorescence and “Off-on” Digital Action. J Am Chem Soc 119:7891–7892

    Article  Google Scholar 

  29. Magri DC, Coen GD, Boyd RL, de Silva AP (2006) Consolidating molecular AND logic with two chemical inputs. Anal Chim Acta 568:156–160

    Article  PubMed  CAS  Google Scholar 

  30. Fan J, Peng X, Wu Y, Lu E, Hou J, Zhang H, Zhang R, Fu X (2005) A new PET fluorescent sensor for Zn2+. J Lumin 114:125–130

    Article  CAS  Google Scholar 

  31. Wang YW, Shi YT, Peng Y, Zhang AJ, Ma TH, Dou W, Zheng JR (2009) Fluorescent sensors for Ca2+ and Pb2+ based on binaphthyl derivatives. Spectrochim Acta Part A 72:322–326

    Article  Google Scholar 

  32. Dang F, Lei K, Liu W (2008) A New Highly Selective Fluorescent Silver Probe. J Fluoresc 18:149–153

    Article  PubMed  CAS  Google Scholar 

  33. Callan JF, Mulrooney RC, Kamila S, McCaughan B (2008) Anion Sensing with Luminescent Quantum Dots—A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism. J Fluoresc 18:527–532

    Article  PubMed  CAS  Google Scholar 

  34. Du J, Fan J, Peng X, Li H, Wang J, Sun S (2008) Highly Selective and Anions Controlled Fluorescent Sensor for Hg2+ in Aqueous Environment. J Fluoresc 18:919–924

    Article  PubMed  CAS  Google Scholar 

  35. Sung K, Fu HK, Hong SH (2007) A Fe3+/Hg2+-selective anthracene-based fluorescent PET sensor with tridentate ionophore of amide/β-amino alcohol. J Fluoresc 17:383–389

    Article  PubMed  CAS  Google Scholar 

  36. Seo HS, Karim MM, Lee SH (2008) Selective Fluorimetric Recognition of Cesium Ion by 15-Crown-5-Anthracene. J Fluoresc 18:853–857

    Article  PubMed  CAS  Google Scholar 

  37. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem Rev 97:3083–3132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (KRF-2008-313-C00565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, H.S., Lee, S.H. A Novel Fluorescent Cesium Ion-Selective Optode Membrane based on 15-Crown-5-Anthracene. J Fluoresc 21, 747–751 (2011). https://doi.org/10.1007/s10895-010-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0765-3

Keywords

Navigation