Skip to main content
Log in

Photobleaching on Photonic Crystal Enhanced Fluorescence Surfaces

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effect of resonant fluorescent enhancement from a photonic crystal surface upon the fluorescent photobleaching rate of Cyanine-5 labeled protein has been investigated. We show that the enhanced excitation mechanism for photonic crystal enhanced fluorescence, in which the device surface resonantly couples light from an excitation laser, accelerates photobleaching in proportion to the coupling efficiency of the laser to the photonic crystal. We also show that the enhanced extraction mechanism, in which the photonic crystal directs emitted photons approximately normal to the surface, does not play a role in the rate of photobleaching. We show that the photobleaching rate of dye molecules on the photonic crystal surface is accelerated by 30x compared to an ordinary glass surface, but substantial signal gain is still evident, even after extended periods of continuous illumination at the resonant condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ganesh N, Zhang W, Mathias PC, Chow E, Soares JANT, Malyarchuk V, Smith AD, Cunningham BT (2007) Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol 2:515–520

    Article  PubMed  Google Scholar 

  2. Ganesh N, Block ID, Mathias PC, Zhang W, Malyarchuk V, Cunningham BT (2008) Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors. Opt Express 16:21626–21640

    Article  PubMed  CAS  Google Scholar 

  3. Budach W, Neuschaefer D, Wanke C, Chibout S-D (2003) Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling. Anal Chem 75:2571–2577

    Article  PubMed  CAS  Google Scholar 

  4. Jin H, Zangar RC (2009) Protein modifications as potential biomarkers in breast cancer. Biomark Insights 4:191–200

    PubMed  CAS  Google Scholar 

  5. Mathias PC, Ganesh N, Cunningham BT (2008) Application of photonic crystal enhanced fluorescence to a cytokine immunoassay. Anal Chem 80:9013–9020

    Article  PubMed  CAS  Google Scholar 

  6. Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  7. Okumus B, Arslan S, Fengler SM, Myong S, Ha T (2009) Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 131:14844–14849

    Article  PubMed  CAS  Google Scholar 

  8. Fu Y, Lakowicz JR (2006) Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. Anal Chem 78:6238–6245

    Article  PubMed  CAS  Google Scholar 

  9. Challener WA, Edwards JD, McGowan RW, Skorjanec J, Yang Z (2000) A multilayer grating-based evanescent wave sensing technique. Sens Actuators, B 71:42–46

    Article  Google Scholar 

  10. Kummerlen J, Leitner A, Brunner H, Aussenegg FR, Wokaun A (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys: An International Journal at the Interface Between Chemistry and Physics 80:1031–1046

    Google Scholar 

  11. Ganesh N, Mathias PC, Zhang W, Cunningham BT (2008) Distance dependence of fluorescence enhancement from photonic crystal surfaces. J Appl Phys 103:083104

    Article  Google Scholar 

  12. Ganesh N, Cunningham BT (2006) Photonic crystal near UV reflectance filters fabricated by nano replica molding. Appl Phys Lett 88:071110–071113

    Article  Google Scholar 

  13. Ohtera Y, Onuki T, Inoue Y, Kawakami S (2007) Multichannel photonic crystal wavelength filter array for near-infrared wavelengths. J Lightwave Technol 25:499–503

    Article  CAS  Google Scholar 

  14. Block ID, Chan LL, Cunningham BT (2006) Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens Actuators B 120:187–193

    Article  Google Scholar 

  15. Block ID, Pineda MF, Choi CJ, Cunningham BT (2008) High sensitivity plastic-substrate photonic crystal biosensor. IEEE Sensors 8:1546–1547

    Article  CAS  Google Scholar 

  16. Cunningham BT, Lin B, Qiu J, Li P, Pepper J, Hugh B (2002) A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens Actuators B 85:219–226

    Article  Google Scholar 

  17. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Meth 5:507–516

    Article  CAS  Google Scholar 

  18. Block ID, Mathias PC, Ganesh N, Jones SI, Dorvel BR, Chaudhery V, Vodkin LO, Bashir R, Cunningham BT (2009) A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces. Opt Express 17:13222–13235

    Article  PubMed  CAS  Google Scholar 

  19. Axelrod D (1981) Cell surface contacts illuminated by total internal reflection rluorescence. J Cell Biol 89:141–145

    Article  PubMed  CAS  Google Scholar 

  20. Wu HY, Zhang W, Mathias PC, Cunningham BT (2010) Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface. Nanotechnology 21:125203–125210

    Article  PubMed  Google Scholar 

  21. Mathias PC, Ganesh N, Zhang W, Cunningham BT (2008) Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence. J Appl Phys 103:094320

    Article  Google Scholar 

  22. Dobbs D, Cunningham BT (2006) Optically tunable photonic crystal reflectance filter. Appl Opt 45:7286–7293

    Article  PubMed  Google Scholar 

  23. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681–681

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (Grant No. GM086382A), the National Science Foundation (Grant No. CBET 07-54122), and SRU Biosystems. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of National Institutes of Health or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Cunningham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhery, V., Lu, M., Huang, C.S. et al. Photobleaching on Photonic Crystal Enhanced Fluorescence Surfaces. J Fluoresc 21, 707–714 (2011). https://doi.org/10.1007/s10895-010-0760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0760-8

Keywords

Navigation