Skip to main content
Log in

Highly Selective Fluorescent Recognition of Pyrophosphate in Water by a New Chemosensing Ensemble

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new chemosensing ensemble that displays sensitive and selective fluorescent recognition of pyrophosphate in water at pH 7.4 has been developed. The ensemble is constructed by a copper complex (receptor) and eosin Y (indicator), the constructed ensemble is capable of highly selectively discriminate pyrophosphate from other common existing anions such as CH3COO, HSO 4 , NO 3 , H2PO 4 , HPO 2−4 , PO 3−4 , NCS, I, Cl, Br, Fas well as some structurally similar carboxylates such as citrate, tartrate, oxalate, malonate, succinate and glutarate.

A new chemosensing ensemble that can effectively differentiate pyrophosphate from common existing anions and structurally similar carboxylate anions in 100% aqueous solution at physiological pH has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmidtchen FP, Berger M (1997) Artificial organic host molecules for anions. Chem Rev 97:1609–1646

    Article  PubMed  CAS  Google Scholar 

  2. Fabbrizzi L, Licchelli M, Rabaioli G, Taglietti A (2000) The design of luminescent sensors for anions and ionisable analytes. Coord Chem Rev 205:85–108

    Article  CAS  Google Scholar 

  3. Gale PA (2006) Structural and molecular recognition studies with acyclic anion receptors. Acc Chem Res 39:465–475

    Article  PubMed  CAS  Google Scholar 

  4. Lipscomb WN, Sträter N (1996) Recent advances in zinc enzymology. Chem Rev 96:2375–2434

    Article  PubMed  CAS  Google Scholar 

  5. Doherty M, Belcher C, Regan M, Jones A, Ledingham J (1996) Association between synovial fluid levels of inorganic pyrophosphate and short term radiographic outcome of knee osteoarthritis. Ann Rheum Dis 55:432–436

    Article  PubMed  CAS  Google Scholar 

  6. Timms AE, Zhang Y, Russell RGG, Brown MA (2002) Genetic studies of disorders of calcium crystal deposition. Rheumatology 41:725–729

    Article  PubMed  CAS  Google Scholar 

  7. Xu S, He M, Yu H, Cai X, Tan X, Lu B, Shu B (2001) A quantitative method to measure telomerase activity by bioluminescence connected with telomeric repeat amplification protocol. Anal Biochem 299:188–193

    Article  PubMed  CAS  Google Scholar 

  8. Singh NJ, Jun EJ, Chellappan K, Thangadurai D, Chandran RP, Hwang LC, Yoon J, Kim KS (2007) Quinoxaline−imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Org Lett 9:485–488

    Article  PubMed  CAS  Google Scholar 

  9. Kim SK, Singh NJ, Kwon J, Hwang LC, Park SJ, Kim KS, Yoon J (2006) Fluorescent imidazolium receptors for the recognition of pyrophosphate. Tetrahedron 62:6065–6072

    Article  CAS  Google Scholar 

  10. McDonough MJ, Reynolds AJ, Lee WYG, Jolliffe KA (2006) Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor. Chem Commun 2971–2973

  11. Aldakov D, Anzenbacher P, Jr. (2003) Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate. Chem Commun 1394–1395

  12. Sun Y, Zhong C, Gong R, Fu E (2008) A highly selective fluorescent probe for pyrophosphate in aqueous solution. Org Biomol Chem 6:3044–3047

    Article  PubMed  CAS  Google Scholar 

  13. Anzenbacher P Jr, Jursíková K, Sessler JL (2000) Second generation calixpyrrole anion sensors. J Am Chem Soc 122:9350–9351

    Article  CAS  Google Scholar 

  14. Nishizawa S, Kato Y, Teramae N (1999) Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. J Am Chem Soc 121:9463–9464

    Article  CAS  Google Scholar 

  15. Lee HN, Xu Z, Kim SK, Swamy KMK, Kim Y, Kim SJ, Yoon J (2007) Pyrophosphate-selective fluorescent chemosensor at physiological pH: formation of a unique excimer upon addition of pyrophosphate. J Am Chem Soc 129:3828–3829

    Article  PubMed  CAS  Google Scholar 

  16. Lee HN, Swamy KMK, Kim SK, Kwon JY, Kim Y, Kim SJ, Yoon YJ, Yoon J (2007) Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes. Org Lett 9:243–246

    Article  PubMed  CAS  Google Scholar 

  17. Jang YJ, Jun EJ, Lee YJ, Kim YS, Kim JS, Yoon J (2005) Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO 4 in 100% aqueous solution. J Org Chem 70:9603–9606

    Article  PubMed  CAS  Google Scholar 

  18. Cho HK, Lee DH, Hong JI (2005) A fluorescent pyrophosphate sensor via excimer formation in water. Chem Commun 1690–1692

  19. Lee DH, Kim SY, Hong JI (2004) A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew Chem Int Ed 43:4777–4780

    Article  CAS  Google Scholar 

  20. Park C, Hong JI (2010) A new fluorescent sensor for the detection of pyrophosphate based on a tetraphenylethylene moiety. Tetrahedron Lett 51:1960–1962

    Article  CAS  Google Scholar 

  21. Aldakov D, Anzenbacher P Jr (2004) Sensing of aqueous phosphates by polymers with dual modes of signal transduction. J Am Chem Soc 126:4752–4753

    Article  PubMed  CAS  Google Scholar 

  22. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J Am Chem Soc 124:3920–3925

    Article  PubMed  CAS  Google Scholar 

  23. Swamy KMK, Kwon SK, Lee HN, Kumar MS, Kim JS, Yoon J (2007) Fluorescent sensing of pyrophosphate and ATP in 100% aqueous solution using a fluorescein derivative and Mn2+. Tetrahedron Lett 48:8683–8686

    Article  CAS  Google Scholar 

  24. Lee JH, Park J, Lah MS, Chin J, Hong JI (2007) High-affinity pyrophosphate receptor by a synergistic effect between metal coordination and hydrogen bonding in water. Org Lett 9:3729–3731

    Article  PubMed  CAS  Google Scholar 

  25. Quang DT, Kim JS (2007) Calixarene-derived fluorescent probes. Chem Rev 107:3780–3799

    Article  PubMed  Google Scholar 

  26. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  27. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716

    Article  PubMed  CAS  Google Scholar 

  28. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  PubMed  Google Scholar 

  29. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  30. Nandhikonda P, Paudel N, Heagy MD (2009) Minimal modification approach to red-shifted absorption and fluorescence in 1, 8-naphthalimides. Tetrahedron 65:2173–2177

    Article  CAS  Google Scholar 

  31. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Teaching old indicators new tricks. Acc Chem Res 34:963–972

    Article  PubMed  CAS  Google Scholar 

  32. Wright AT, Anslyn EV (2006) Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev 35:14–28

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen BT, Anslyn EV (2006) Indicator–displacement assays. Coord Chem Rev 250:3118–3127

    Article  CAS  Google Scholar 

  34. Beer PD, Gale PA (2001) Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  35. Tang LJ, Park J, Kim HJ, Kim Y, Kim SJ, Chin J, Kim KM (2008) Tight binding and fluorescent sensing of oxalate in water. J Am Chem Soc 130:12606–12607

    Article  PubMed  CAS  Google Scholar 

  36. Tang LJ, Li Y, Zhang H, Guo ZL, Qian JH (2009) A new chemosensing ensemble for fluorescent recognition of pyrophosphate in water at physiological pH. Tetrahedron Lett 50:6844–6847

    Article  CAS  Google Scholar 

  37. Watchasit S, Kaowliew A, Suksai C, Tuntulani T, Ngeontae W, Pakawatchai C (2010) Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Lett 51:3398–3402

    Article  CAS  Google Scholar 

  38. Boiocchi M, Bonizzoni M, Fabbrizzi L, Piovani G, Taglietti A (2004) A dimetallic cage with a long ellipsoidal cavity for the fluorescent detection of dicarboxylate anions in water. Angew Chem Int Ed 43:3847–3852

    Article  CAS  Google Scholar 

  39. Kim SK, Lee DH, Hong JI, Yoon J (2009) Chemosensors for pyrophosphate. Acc Chem Res 42:23–31

    Article  PubMed  CAS  Google Scholar 

  40. Gunnlaugsson T, Davis AP, O’Brien JE, Glynn M (2005) Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. Org Biomol Chem 3:48–56

    Article  PubMed  CAS  Google Scholar 

  41. Gunnlaugsson T, Davis AP, O’Brien JE, Glynn M (2002) Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. Org Lett 4:2449–2452

    Article  PubMed  CAS  Google Scholar 

  42. Schmuck C, Bickert V, Merschky M, Geiger L, Rupprecht D, Dudaczek J, Wich P, Rehm T, Machon U (2008) A facile and efficient multi-gram synthesis of N-protected 5-(guanidinocarbonyl)-1 H-pyrrole-2-carboxylic acids. Eur J Org Chem 324–329.

  43. Fabbrizzi L, Marcotte N, Stomeo F, Taglietti A (2002) Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angew Chem Int Ed 41:3811–3814

    Article  CAS  Google Scholar 

  44. Conner KA (1987) Binding constants-the measurement of molecular complex stability. Wiley, New York

    Google Scholar 

  45. Kim SY, Hong JI (2009) Dual signal (color change and fluorescence on–off) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Lett 50:1951–1953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Tang or Raju Nandhakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Liu, M., Li, F. et al. Highly Selective Fluorescent Recognition of Pyrophosphate in Water by a New Chemosensing Ensemble. J Fluoresc 21, 701–705 (2011). https://doi.org/10.1007/s10895-010-0758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0758-2

Keywords

Navigation