Skip to main content
Log in

Kinetics of Surfactant-induced Aggregation of Lysozyme Studied by Fluorescence Spectroscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The study of protein conformational changes in the presence of surfactants and lipids is important in the context of protein folding and misfolding. In the present study, we have investigated the mechanism of the protein conformational change coupled with aggregation leading to size growth of Hen Egg White Lysozyme (HEWL) in the presence of an anionic detergent such as sodium dodecyl sulphate (SDS) in alkaline pH. We have utilized intrinsic protein fluorescence (tryptophan) and extrinsic fluorescent reporters such as 8-anilinonaphthalene-1-sulfonic acid (ANS), dansyl and fluorescein to follow the protein conformational change in real-time. By analyzing the kinetics of fluorescence intensity and anisotropy of multiple fluorescent reporters, we have been able to delineate the mechanism of surfactant-induced aggregation of lysozyme. The kinetic parameters reveal that aggregation proceeds with an initial fast-phase (conformational change) followed by a slow-phase (self-assembly). Our results indicate that SDS, below critical micelle concentration, induces conformational expansion that triggers the aggregation process at a micromolar protein concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12:25–31

    Article  PubMed  CAS  Google Scholar 

  2. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    Article  PubMed  CAS  Google Scholar 

  3. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CCF, Terry CJ, Feest TG, Zalin AM, Hsuan JJ (1993) Human Lysozyme gene mutation cause hereditary amyloidosis. Nature 362:553–557

    Article  PubMed  CAS  Google Scholar 

  4. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    PubMed  CAS  Google Scholar 

  5. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  6. Kumar S, Mohanty SK, Udgaonkar JB (2007) Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion. J Mol Biol 367:1186–1204

    Article  PubMed  CAS  Google Scholar 

  7. Sluzky V, Tamada JA, Klibanov AM, Langer R (1991) Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci USA 88:9377–9381

    Article  PubMed  CAS  Google Scholar 

  8. Ferrão-Gonzales AD, Souto SO, Silva JL, Foguel D (2000) The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state. Proc Natl Acad Sci USA 97:6445–6450

    Article  PubMed  Google Scholar 

  9. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for misfolded disease. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  10. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  PubMed  CAS  Google Scholar 

  11. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  12. Fluorescence Spectroscopy in Biology (2005) Hof M, Hutterer R, Fidler V (Eds.) Vol. 3, Springer, Berlin Heidelberg

  13. Nilsson MR, Dobson CM (2003) In vitro characterization of lactoferrin aggregation and amyloid formation. Biochemistry 42:375–382

    Article  PubMed  CAS  Google Scholar 

  14. Sasahara K, Yagi H, Sakai M, Naiki M, Goto Y (2008) Amyloid nucleation triggered by agitation of β2-microglobulin under acidic and neutral pH conditions. Biochemistry 47:2650–2660

    Article  PubMed  CAS  Google Scholar 

  15. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci USA 99:9196–9201

    Article  PubMed  Google Scholar 

  16. Padrick SB, Miranker AD (2002) Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41:4694–4703

    Article  PubMed  CAS  Google Scholar 

  17. Mukhopadhyay S, Nayak P, Udgaonkar JB, Krishnamoorthy G (2006) Characterization of amyloid fibril formation by mapping residue-specific fluorescence dynamics. J Mol Biol 358:935–942

    Article  PubMed  CAS  Google Scholar 

  18. Itzhaki LS, Evans PA, Dobson CM, Radford SE (1994) Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry 33:5212–5220

    Article  PubMed  CAS  Google Scholar 

  19. Rothwarf DM, Scheraga HA (1996) Role of non-native aromatic and hydrophobic interactions in the folding of hen egg white lysozyme. Biochemistry 35:13797–13807

    Article  PubMed  CAS  Google Scholar 

  20. Bachmann A, Segel D, Kiefhaber T (2002) Test for cooperativity in the early kinetic intermediate in lysozyme folding. Biophys Chem 96:141–151

    Article  PubMed  CAS  Google Scholar 

  21. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CCF, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793

    Article  PubMed  CAS  Google Scholar 

  22. Dumoulin M, Kumita JR, Dobson CM (2006) Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res 39:603–610

    Article  PubMed  CAS  Google Scholar 

  23. Merlini G, Bellotti V (2005) Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin Chim Acta 357:168–172

    Article  PubMed  CAS  Google Scholar 

  24. Frare E, Mossuto MF, de Laureto PP, Tolin S, Menzer L, Dumoulin M, Dobson CM, Fontana A (2009) Characterization of oligomeric species on the aggregation pathway of human lysozyme. J Mol Biol 387:17–27

    Article  PubMed  CAS  Google Scholar 

  25. Canet D, Sunde M, Last AM, Miranker A, Spencer A, Robinson CV, Dobson CM (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry 38:6419–6427

    Article  PubMed  CAS  Google Scholar 

  26. Frare E, de Laureto PP, Zurdo J, Dobson CM, Fontana A (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340:1153–1165

    Article  PubMed  CAS  Google Scholar 

  27. Morshedi D, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M (2010) Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation. Biochim Biophys Acta 1804:714–722

    PubMed  CAS  Google Scholar 

  28. Malisauskas M, Ostman J, Darinskas A, Zamotin V, Liutkevicius E, Lundgren E, Morozova-Roche LA (2005) Does the cytotoxic effect of transient amyloid oligomers from common equine lysozyme in vitro imply innate amyloid toxicity? J Biol Chem 280:6269–6275

    Article  PubMed  CAS  Google Scholar 

  29. Gharibyan AL, Zamotin V, Yanamandra K, Moskaleva OS, Margulis BA, Kostanyan IA, Morozova-Roche LA (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–1349

    Article  PubMed  CAS  Google Scholar 

  30. Holley M, Eginton C, Schaefer D, Brown LR (2008) Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution. Biochem Biophys Res Commun 373:164–168

    Article  PubMed  CAS  Google Scholar 

  31. Moosavi-Movahedi AA, Pirzadeh P, Hashemnia S, Ahmadian S, Hemmateenejad B, Amani M, Saboury AA, Ahmad F, Shamsipur M, Hakimelahi GH, Tsai FY, Alijanvand HH, Yousefi R (2007) Fibril formation of lysozyme upon interaction with sodium dodecyl sulfate at pH 9.2. Colloids Surf B Biointerfaces 60:55–61

    Article  PubMed  CAS  Google Scholar 

  32. Kumar S, Ravi VK, Swaminathan R (2008) How do surfactants and DTT affect the size, dynamics, activity and growth of soluble lysozyme aggregates? Biochem J 415:275–288

    Article  PubMed  CAS  Google Scholar 

  33. Vernaglia BA, Huang J, Clark ED (2004) Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules 5:1362–1370

    Article  PubMed  CAS  Google Scholar 

  34. Pertinhez TA, Bouchard M, Smith RAG, Dobson CM, Smith LJ (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Lett 529:193–197

    Article  PubMed  CAS  Google Scholar 

  35. Andersen KK, Oliveira CL, Larsen KL, Poulsen FM, Callisen TH, Westh P, Pedersen JS, Otzen D (2009) The role of decorated SDS micelles in sub-CMC protein denaturation and association. J Mol Biol 391:207–226

    Article  PubMed  CAS  Google Scholar 

  36. Stenstam A, Khan A, Wennerström H (2001) The lysozyme-dodecyl sulfate system. An example of protein-surfactant aggregation. Langmuir 17:7513–7520

    Article  CAS  Google Scholar 

  37. Chatterjee A, Moulik SP, Majhib PR, Sanyal SK (2002) Studies on surfactant—biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin (Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA). Biophys Chem 98:313–327

    Article  PubMed  CAS  Google Scholar 

  38. Pirzadeh P, Moosavi-Movahedi AA, Hemmateenejad B, Ahmad F, Shamsipur M, Saboury AA (2006) Chemometric studies of lysozyme upon interaction with sodium dodecyl sulfate and β-cyclodextrin. Colloids Surf B Biointerfaces 52:31–38

    Article  PubMed  CAS  Google Scholar 

  39. Yamashita S, Nishimoto E, Szabo AG, Yamasaki N (1996) Steady-state and time-resolved fluorescence studies on the ligand-induced conformational change in an active lysozyme derivative, Kyn62-Lysozyme. Biochemistry 35:531–537

    Article  PubMed  CAS  Google Scholar 

  40. Chowdhury RP, Chatterji D (2007) Estimation of Förster’s distance between two ends of Dps protein from mycobacteria: distance heterogeneity as a function of oligomerization and DNA binding. Biophys Chem 128:19–29

    Article  PubMed  CAS  Google Scholar 

  41. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the ‘molten globule’ intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  PubMed  CAS  Google Scholar 

  42. Lindgren M, Sörgjerd K, Hammarström P (2005) Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J 88:4200–4212

    Article  PubMed  CAS  Google Scholar 

  43. Fuguet E, Ráfols C, Rosés M, Bosch M (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548:95–100

    Article  CAS  Google Scholar 

  44. Wu LZ, Sheng YB, Xie JB, Wang W (2008) Photoexcitation of tryptophan groups induced reduction of disulfide bonds in hen egg white lysozyme. J Mol Struct 882:101–106

    Article  CAS  Google Scholar 

  45. Frieden C (2007) Protein aggregation processes: in search of the mechanism. Protein Sci 16:2334–2344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank IISER Mohali for financial support during the course of the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, N., Bhattacharya, M. & Mukhopadhyay, S. Kinetics of Surfactant-induced Aggregation of Lysozyme Studied by Fluorescence Spectroscopy. J Fluoresc 21, 615–625 (2011). https://doi.org/10.1007/s10895-010-0749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0749-3

Keywords

Navigation