Skip to main content
Log in

A Comprehensive Investigation on the Cooperative Branch Effect on the Optical Properties of Novel Conjugated Compounds

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This paper presents a variety of conjugated derivatives with different number of arms (4-styryl-triphenylamine: C1, 4, 4′-di-styryltriphenylamine: C2, 4, 4′, 4″-tri-styryltriphenylamine: C3). The linear absorption and fluorescence maxima and the molar extinction coefficients are in the order of C1<C2<C3 in various solvents. Two-photon absorption (TPA) up-converted emission of the derivatives were determined with Ti:sapphire femtosecond laser. The maximal TPA emission wavelength and the two-photon absorption cross section of the derivatives are also in the order of C1<C2<C3 in various solvents. The dipole moment changes of the derivatives between the excited state and the ground state were estimated from experiment, and they are in the order of C1<C2<C3, which is confirmed further by the molecular geometry optimization of the derivatives. The electron density distribution and the energy levels of the frontier orbital of the derivatives were analyzed. The cyclic voltammograms of the derivatives were performed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taki M, Wolford JL, O’Halloran TV (2004) Emission ratiometric imaging of intracellular zinc: design of a Benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126(3):712–713

    Article  PubMed  CAS  Google Scholar 

  2. Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI (2006) 8-hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 128(1):344–350

    Article  PubMed  CAS  Google Scholar 

  3. Rice WL, Kaplan DL, Georgakoudi I (2007) Quantitative biorkers of stem cell differentiation based on intrinsic two-photon excited fluorescence. J Biomed Opt 12(6):060504

    Article  PubMed  Google Scholar 

  4. Wu YC, Qu JY (2005) Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue. Opt Lett 30(22):3045–3047

    Article  PubMed  Google Scholar 

  5. (a) Tokar VP, Losytskyy MY, Ohulchanskyy TY, Kryvorotenko DV, Kovalska VB, Balanda AO, Dmytruk IM, Prokopets VM, Yarmoluk SM, Yashchuk VM(2010) Styryl dyes as two-photon excited fluorescent probes for DNA detection and two-photon laser scanning fluorescence microscopy of living cells. J Fluorescence 10.1007/s10895-010-0630-4, available in web. (b) Liu B, Zhang HL, Liu J, Huang ZL, Zhao YD, Luo QM (2007) Acetylene-substituted two-photon absorbing molecules with rigid elongated Pi-conjugation: synthesis, spectroscopic properties and two-photon fluorescence cell imaging applications. Journal of Fluorescence 17(5): 573–579 (c) Picot A, D’Aléo A, Baldeck PL, Grichine A, Duperray A, Andraud C, Maury O (2008) Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy. J Am Chem Soc 130 (5):1532–1533

    Google Scholar 

  6. Law GL, Wong KL, Man C, Wong WT, Tsao SW, Lam M, Lam P (2008) Emissive terbium probe for multiphoton in vitro cell imaging. J Am Chem Soc 130(12):3714–3715

    Article  PubMed  CAS  Google Scholar 

  7. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675

    Article  PubMed  CAS  Google Scholar 

  8. Karotki A, Khurana M, Lepock JR, Wilson BC (2006) Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy. Photochem Photobiol 82(2):443–452

    Article  PubMed  CAS  Google Scholar 

  9. Babgi B, Rigamonti L, Cifuentes MP, Corkery TC, Randles MD, Schwich T, Petrie S, Stranger R, Teshome A, Asselberghs I, Clays K, Samoc M, Humphrey MG (2009) Length-dependent convergence and saturation behavior of electrochemical, linear optical, quadratic nonlinear optical, and cubic nonlinear optical properties of dipolar alkynylruthenium complexes with oligo(phenyleneethynylene) bridges. J Am Chem Soc 131(29):10293–10307

    Article  PubMed  CAS  Google Scholar 

  10. Liu CG, Guan W, Yan LK, Su ZM, Song P, Wang EB (2009) Second-order nonlinear optical properties of transition-metal-trisubstituted polyoxometalate−diphosphate complexes: a donor−conjugated bridge−acceptor paradigm for totally inorganic nonlinear optical materials. J Phys Chem C 113(45):19672–19676

    Article  CAS  Google Scholar 

  11. (a) Reinhardt BA (1998) Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem Mater 10(7): 1863–1874 (b) Meltola NJ, Vaarno J, Soini AE (2005) Dipyrrylmetheneboron difluorides as labels in two-photon excited fluorometry. Part II–nucleic acid hybridization assays. J Fluorescence 15(3):233–242

    Google Scholar 

  12. Belfield KD, Liu Y, Negres RA, Fan M, Pan G, Hagan DJ, Hernandez FE (2002) Two-photon photochromism of an organic material for holographic recording. Chem Mater 14(9):3663–3667

    Article  CAS  Google Scholar 

  13. He GS, Dai TC, Lin JM, Prasad PN, Kannan R, Dombroskie AG, Vaia RA, Tan LS (2004) Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores. J Chem Phys 120(11):5275–5284

    Article  PubMed  CAS  Google Scholar 

  14. Bordeau G, Lartia R, Metge G, Fiorini-Debuisschert C, Charra F, Teulade-Fichou MP (2008) Trinaphthylamines as robust organic materials for two-photon-induced fluorescence. J Am Chem Soc 130(50):16836–16837

    Article  PubMed  CAS  Google Scholar 

  15. Williams-Harry M, Bhaskar A, Ramakrishna G, Goodson T, Imamura M, Mawatari A, Nakao K, Enozawa H, Nishinaga T, Iyoda M (2008) Giant thienylene-acetylene-ethylene macrocycles with large two-photon absorption cross section and semishape-persistence. J Am Chem Soc 130(11):3252–3253

    Article  PubMed  CAS  Google Scholar 

  16. Beverina L, Crippa M, Landenna M, Ruffo R, Salice P, Silvestri F, Versari S, Villa A, Ciaffoni L, Collini E, Ferrante C, Bradamante S, Mari CM, Bozio R, Pagani GA (2008) Assessment of water-soluble π-extended squaraines as one- and two-photon singlet oxygen photosensitizers: design, synthesis, and characterization. J Am Chem Soc 130(6):1894–1902

    Article  PubMed  CAS  Google Scholar 

  17. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48(18):3244–3266

    Article  CAS  Google Scholar 

  18. Beverina L, Crippa M, Salice P, Ruffo R, Ferrante C, Fortunati I, Signorini R, Mari CM, Bozio R, Facchetti A, Pagani GA (2008) Indolic squaraines as two-photon absorbing dyes in the visible region: x-ray structure, electrochemical, and nonlinear optical characterization. Chem Mater 20(10):3242–3244

    Article  CAS  Google Scholar 

  19. Porrès L, Mongin O, Katan C, Charlot M, Pons T, Mertz J, Blanchard-Desce M (2004) Enhanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine. Org Lett 6(1):47–50

    Article  PubMed  Google Scholar 

  20. Segura JL, Gómez R, Martín N, Guldi DM (2001) Synthesis of photo- and electroactive stilbenoid dendrimers carrying dibutylamino peripheral groups. Org Lett 3(17):2645–2648

    Article  PubMed  CAS  Google Scholar 

  21. Perrin DD, Armarego WLF, Perrin DR (1966) Purification of laboratory chemicals. Pergamon, New York

    Google Scholar 

  22. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmller A, Resch-Geer U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294

    Article  CAS  Google Scholar 

  23. FischerM GJ (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260(1–2):115–118

    Article  Google Scholar 

  24. Maus M, Reitigg W, Bonafoux D, Lapouyade R (1999) Photoinduced intramolecular charge transfer in a series of differently twisted donor−acceptor biphenyls as revealed by fluorescence. J Phys Chem A 103(18):3388–3401

    Article  CAS  Google Scholar 

  25. Lukeman M, Veal D, Wan P, Ranjit V, Munasinghe N, Corrie JE (2004) Photogeneration of 1, 5-naphthoquinone methides via excited-state (formal) intramolecular proton transfer (ESIPT) and photodehydration of 1-naphthol derivatives in aqueous solution. Can J Chem 82(14):240–253

    Article  CAS  Google Scholar 

  26. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13(3):481–491

    Article  CAS  Google Scholar 

  27. Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37(31):7352–7356

    Article  PubMed  CAS  Google Scholar 

  28. Hyperchem 8.0 Package (2002). Hyperchem Inc., Gainesville FL, USA

  29. Drwar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909

    Article  Google Scholar 

  30. Mallegol T, Gmouh S, Meziane MAA, Blanchard-Desce M, Mongin O (2005) Practical and efficient synthesis of tris(4-formylphenyl)amine, a key building block in materials chemistry. Synthesis 2005(11):1771–1774

    Article  Google Scholar 

  31. Chiang WY, Laane J (1994) Fluorescence spectra and torsional potential functions for trans-stilbene in its S0 and S1 (π, π*) electronic states. J Chem Phys 100(12):8755–8768

    Article  CAS  Google Scholar 

  32. Wang S, Kim SH (2009) Photophysical and electrochemical properties of D–π–A type solvatofluorchromic isophorone dye for pH molecular switch. Current Appl Phys 9(4):783–787

    Article  Google Scholar 

  33. Albota M, Beljonne D, Brédas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281(11):1653–1656

    Article  PubMed  CAS  Google Scholar 

  34. Nguyen KA, Day PN, Pachtera R (2007) Effects of solvation on one- and two-photon spectra of coumarin derivatives: a time-dependent density functional theory study. J Chem Phys 126(9):094303–094313

    Article  PubMed  Google Scholar 

  35. Guo JD, Wang CK, Luo Y, Agren H (2003) Influence of electron-acceptor strength on the resonant two-photon absorption cross sections of diphenylaminofluorene-based chromophores. Phys Chem Chem Phys 5(18):3869–3873

    Article  CAS  Google Scholar 

  36. He GS, Tan LS, Zheng QD, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108(4):1245–1330

    Article  PubMed  CAS  Google Scholar 

  37. Lippert VEZ (1957) Spektroskopische bistimmung des dipolmomentes aromatischer Verbindungen Im Ersten Angeregten Singulettzustand. Z Electrochem 61:962

    CAS  Google Scholar 

  38. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Google Scholar 

  39. Aoki K, Guo Y, Chen JY (2009) Diffusion-controlled currents in viscous solutions of polyethylene glycols. J Electroanal Chem 629(1–2):73–77

    Article  CAS  Google Scholar 

  40. Domagalska BW, Wilk KA, Wysocki S (2003) Experimental and theoretical studies on solvent effects of amphiphilic conjugated polyenals. Phys Chem Chem Phys 5(4):696–702

    Article  CAS  Google Scholar 

  41. Liu J, Tu G, Zhou Q, Cheng Y, Geng Y, Wang L, Ma D, Jing X, Wang F (2006) Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1, 8-naphthalimide as green dopant. J Mater Chem 16(15):1431–1438

    Article  CAS  Google Scholar 

  42. Bard AJ, Faulkner LA (1984) Electrochemical methods-fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from National Natural Science Foundation of China (Nos. 20776165, 20702065, 20872184). We would thank “the Foundation of Chongqing Science and Technology Commission” (CSTC2008BA4020, CSTC2009BB4216). H. Li thanks “A Foundation for the Author of National Excellent Doctoral Dissertation of PR China (200735)”, and thanks supports from the Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences. We thank Dr. X. Chen for helpful discussion on molecular geometry optimization. We also thank “Innovative Talent Training Project, the Third State of ‘211 Project, S-09103’, Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Gao or Hongru Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Gao, F., Liu, J. et al. A Comprehensive Investigation on the Cooperative Branch Effect on the Optical Properties of Novel Conjugated Compounds. J Fluoresc 21, 545–554 (2011). https://doi.org/10.1007/s10895-010-0741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0741-y

Keywords

Navigation