Skip to main content
Log in

Iridium(III) Complexes with Orthometalated Phenylimidazole Ligands Subtle Turning of Emission to the Saturated Green Colour

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A series of novel six iridium complexes (1–6) bearing two substituted phenylimidazole and an additional acetylacetone as the third co-auxilary ligand are reported. The lowest absorption band for all iridium complexes consist of a mixture of heavy atom Ir(III) enhanced 3MLCT and 3 π-π* transitions and the phosphorescent peak wavelength can be fine-tuned to cover the spectral range 455–518 nm with high quantum efficiencies. The peak wavelength of the dopants can be finely tuned depending upon the electronic properties of the substituents. On the basis of onset potentials of the oxidation and reduction, the HOMO-LUMO energies were calculated and the reported iridium complexes emit green light with exceeding higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baldo MA, O’Brien DF, You Y, Shoustikov A, Thompson ME, Forrest SR (1988) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Google Scholar 

  2. Baldo MA, Thompson ME, Forrest SR (1999) Phosphorescent materials for application to organic light emitting devices. Pure Appl Chem 71:2095–2106

    Article  CAS  Google Scholar 

  3. Gong X, Ostrowski JC, Bazan GC, Moses D, Heeger AJ (2002) Red electrophosphorescence from polymer doped with iridium complex. Appl Phys Lett 81:3711–3713

    Article  CAS  Google Scholar 

  4. Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J Appl Phys 90:5048–5051

    Article  CAS  Google Scholar 

  5. Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y (2001) Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl Phys Lett 79:156–158

    Article  CAS  Google Scholar 

  6. Tokito S, Iijima T, Tsuzuki T, Sato F (2003) High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers. Appl Phys Lett 83:2459–2461

    Article  CAS  Google Scholar 

  7. Lo S-C, Namdas EB, Burn PL, Samuel IDW (2003) Synthesis and properties of highly efficient electroluminescent green phosphorescent iridium cored dendrimers. Macromolecules 36:9721–9730

    Article  CAS  Google Scholar 

  8. Kwong RC, Nugent MR, Michalski L, Ngo T, Rajan K, Tung Y-J, Weaver MS, Zhou TX, Hack M, Thompson ME, Forrest SR, Brown JJ (2002) High operational stability of electrophosphorescent devices. Appl Phys Lett 81:162–164

    Article  CAS  Google Scholar 

  9. He G, Chang S-C, Chen F-C, Li Y, Yang Y (2002) Highly efficient polymer lightemitting devices using a phosphorescent sensitizer. Appl Phys Lett 81:1509–1512

    Article  CAS  Google Scholar 

  10. Lee C-L, Lee KB, Kim J-J (2000) Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine)iridium as a triplet emitter. Appl Phys Lett 77:2280–2282

    Article  CAS  Google Scholar 

  11. Chen C-T (2004) Evolution of red organic light-emitting diodes: materials and devices. Chem Mater 16:4389–4400

    Article  CAS  Google Scholar 

  12. Grushin VV, Herron N, LeCloux DD, Marshall WJ, Petrov VA, Wang Y (2001) New, efficient electroluminescent materials based on organometallic Ir complexes. Chem Commun 1494–1495

  13. Bernhard S, Gao X, Malliaras GG, Abruna HD (2002) Efficient electroluminescent devices based on a chelated Osmium(II) complex. Adv Mater 14:433–435

    Article  CAS  Google Scholar 

  14. Carlson B, Phelan GD, Kaminsky W, Dalton L, Jiang X, Liu S, Jen AKY (2002) Divalent osmium complexes: synthesis, characterization, strong red phosphorescence, and electrophosphorescence. J Am Chem Soc 124:14162–14172

    Article  PubMed  CAS  Google Scholar 

  15. Kim JH, Liu MS, Jen AKY, Carlson B, Dalton LR, Shu CF, Dodda R (2003) Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter. Appl Phys Lett 83:776–778

    Article  CAS  Google Scholar 

  16. Tung YL, Wu PC, Liu CS, Chi Y, Yu JK, Hu YH, Chou PT, Peng SM, Lee GH, Tao Y, Carty AJ, Shu CF, Wu FI (2004) Highly efficient red phosphorescent osmium(II) complexes for OLED applications. Organometallics 23:3745–3748

    Article  CAS  Google Scholar 

  17. Liu Z, Wang L, Chen J, Wang F, Ouyang X, Cao Y (2005) Synthesis and optoelectronic properties of silole-containing polyfluorenes with binary structures. J Polym Sci Pol Chem 45:756–767

    Article  Google Scholar 

  18. Tung YL, Lee SW, Chi Y, Tao YT, Chien CH, Cheng YM, Chou PT, Peng SM, Liu CS (2005) Organic light-emitting diodes based on charge-neutral Os(II) emitters: generation of saturated red emission with very high external quantum efficiency. J Mater Chem 15:460–464

    Article  CAS  Google Scholar 

  19. Kwong RC, Sibley S, Dubovoy T, Baldo M, Forrest SR, Thompson ME (1999) Efficient, saturated red organic light emitting devices based on phosphorescent platinum(II) porphyrins. Chem Mater 11:3709–3713

    Article  CAS  Google Scholar 

  20. Che C-M, Hou Y-J, Chan MCW, Guo J, Liu Y, Wang Y (2003) [meso-Tetrakis-(pentafluorophenyl)porphyrinato]platinum(II) as an efficient, oxidation-resistant red phosphor: spectroscopic properties and applications in organic light-emitting diodes. J Mater Chem 13:1362–1366

    Article  CAS  Google Scholar 

  21. Yoshinobu G, Noriko H, Motoyoshi Y (1970) Studies on azole compounds. II. Reaction of oxazole N-oxides with phenylisocyanate to give imidazole derivatives. Chem Pharm Bull 18:2000–2008

    Google Scholar 

  22. Nonoyama M (1974) Benzo(h)quinolin-10-yl-N iridium(III) complexes. Bull Chem Soc Jpn 47:767–768

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh

  24. Minaev B, Mineva V, Agren H (2009) Theoretical study of the cyclometalated iridium(III) complexes used as chromophores for organic light emitting diodes. J Phys Chem A 113:726–735

    Article  PubMed  CAS  Google Scholar 

  25. Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization and use in organic light emitting diodes. J Am Chem Soc 123(4304):4312

    Google Scholar 

  26. Colombo MG, Guedel HU (1993) Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3, N ](2, 2 -bipyridine)iridium(III). Inorg Chem 32:3081–3087

    Article  CAS  Google Scholar 

  27. Demas JN, Taylor DG (1979) On the “intersystem crossing” yields in ruthenium(II) and osmium(II) photosensitizers. Inorg Chem 18:3177–3179

    Article  CAS  Google Scholar 

  28. Damrauer NH, Boussie TR, Devenney M, McCusker JK (1997) Effect of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J Am Chem Soc 119:8253–8268

    Article  CAS  Google Scholar 

  29. Djurovich P, Murphy D, Abdel-Razzag F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Synthesis and characterization of phosphorescent cyclometalated iridium complexes. Inorg Chem 40:1704–1711

    Article  PubMed  Google Scholar 

  30. Colombo MG, Gwelel HU (1993) Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3, N′](2, 2′-bipyridine)iridium (III). Inorg Chem 32:3081–3087

    Article  CAS  Google Scholar 

  31. Tang K-C, Liu KL, Chen IC (2004) Rapid intersystem crossing in highly phosphorescent iridium complexes. Chem Phys Lett 386:437–441

    Article  CAS  Google Scholar 

  32. Mi B-X, Wang PF, Liu M-W, Kwong H-L, Wong N-B, Lee CS, Lee ST (2003) Thermally stable hole-transporting material for organic light emitting diode: an isoindole derivative. Chem Mater 15:3148–3151

    Article  CAS  Google Scholar 

  33. Gange RR, Koval CA, Lisensky GC (1980) Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 19:2854–2855

    Article  Google Scholar 

  34. Ranjan S, Lin SY, Hwang KC, Chi Y, Ching WL, Liu CS, Tao YT, Chien CH, Peng SM, Lee GH (2003) Realizing green phosphorescent light-emitting materials from rhenium(I) complexes. Inorg Chem 42:1248–1255

    Article  PubMed  CAS  Google Scholar 

  35. Hay PJ (2002) Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J Phys Chem A 106:1634–1641

    Article  CAS  Google Scholar 

  36. Sudhakar M, Djurovich PI, Hogen-Esch TE, Thompson ME (2003) Phosphorescence quenching by conjugated polymers. J Am Chem Soc 125:7796–7797

    Article  PubMed  CAS  Google Scholar 

  37. Chen FC, He G, Yang Y (2003) Triplet exciton confinement in phosphorescent polymer light-emitting diodes. Appl Phys Lett 82:1006–1008

    Article  CAS  Google Scholar 

  38. Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Substituent effect of iridium complexes for highly efficient red OLEDs. Dalton Trans 15:83–1590

    Google Scholar 

  39. Chen H-Y, Chi Y, Liu C-S, Yu J-K, Cheng Y-M, Chen K-S, Chou P-T, Peng S-M, Lee G-H, Carty AJ, Yeh S-J, Chen C-T (2005) Rational colour tuning and luminescent properties of functionalized boron-containing 2-pyridyl pyrrolide complexes. Adv Funct Mater 15:567–574

    Article  CAS  Google Scholar 

  40. King KA, Spellane DJ, Watts RJ (1985) Excited-state properties of a triply ortho-metalated iridium(III) complex. J Am Chem Soc 107:1431–1432

    Article  CAS  Google Scholar 

  41. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6

    Article  CAS  Google Scholar 

  42. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsybu I, Bau R, Thompson ME (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41:3055–3066

    Article  PubMed  CAS  Google Scholar 

  43. Cummings SD, Eisenberg R (1996) Tuning the excited-state properties of platinum(II) diimine dithiolate complexes. J Am Chem Soc 118:1949–1960

    Article  CAS  Google Scholar 

  44. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125:7377–7387

    Article  PubMed  CAS  Google Scholar 

  45. Tsuboyama A, Iwawaki H, Frugori M, Mukaide T, Kamatain J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J Am Chem Soc 125:12971–12979

    Article  PubMed  CAS  Google Scholar 

  46. Colombo MG, Hauser A, Guedel HU (1993) Evidence for strong mixing between the LC and MLCT excited states in bis(2-phenylpyridinato-C2, N′)(2, 2′-bipyridine)iridium(III). Inorg Chem 32:3088–3092

    Article  CAS  Google Scholar 

  47. Okada S, Iwawaki H, Frugori M, Mukaide J, Kermatami J, Igawa S, Moriyama T, Miuva S, Tsuboyama A, Takiguchi T, Mizutami H (2002) In: Morreale J (ed) Society for information on display, SID Symp. Drig., Scan Jose CA, USA (2002) 1360

  48. Cheng C-C, Yu W-S, Chou P-T, Peng S-M, Lee G-H, Wu P-C, Song Y-H, Chi Y (2003) Syntheses and remarkable photophysical properties of 5-(2-pyridyl)pyrazolate boron complexes: photoinduced electron transfer. Chem Commun 628–2629

  49. Vicente J, Arcas A, Bautista D, de Arellano MCR (2002) Mono- and di-nuclear complexes of ortho-palladated and -platinated 4, 4′-dimethylazobenzene with bis(diphenylphosphino)methane. More data on transphobia. J Organomet Chem 663:164–172

    Article  CAS  Google Scholar 

  50. Hwang GT, Son HS, Ku JK, Kim BH (2003) Synthesis and photophysical studies of bis-enediynes as tunable fluorophores. J Am Chem Soc 125:11241–11248

    Article  PubMed  CAS  Google Scholar 

  51. Urban R, Kramer R, Mihan S, Polborn K, Wagner B, Beck W (1996) Metal complexes of biologically important ligands, LXXXVII -amino carboxylate complexes of palladium(II), iridium(III) and ruthenium(II) from chloro-bridged orthometalated metal compounds and [(OC)3Ru(Cl)( -Cl)]2. J Organomet Chem 517:191–200

    Article  CAS  Google Scholar 

  52. Neve F, Crispini A (2000) Metal-containing amphiphiles: orthometalated iridium(III) complexes with substituted 6 -phenyl-2,2 -bipyridines. Eur J Inorg Chem 1039–1043

Download references

Acknowledgements

One of the authors Dr. J. Jayabharathi, Reader in Chemistry, Annamalai University is thankful to Department of Science and Technology [No. SR/S1/IC-07/2007], University Grants Commission (F. No. 36-21/2008 (SR)) for providing fund to this research work and Prof. C.H. Cheng, Chairman, National Science Council, National Tsing Hua University for my post-doctoral research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Jayabharathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayabharathi, J., Thanikachalam, V., Saravanan, K. et al. Iridium(III) Complexes with Orthometalated Phenylimidazole Ligands Subtle Turning of Emission to the Saturated Green Colour. J Fluoresc 21, 507–519 (2011). https://doi.org/10.1007/s10895-010-0737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0737-7

Keywords

Navigation