Journal of Fluorescence

, Volume 21, Issue 1, pp 409–414

Study on the Interaction of an Anthracycline Disaccharide with DNA by Spectroscopic Techniques and Molecular Modeling

  • Yan Lu
  • Gong-Ke Wang
  • Juan Lv
  • Gui-Sheng Zhang
  • Qing-Feng Liu
Original Paper

Abstract

This study was designed to examine the interaction of 4′-O-(a-L-Cladinosyl) daunorubicin (DNR–D5), a disaccharide anthracycline with calf thymus deoxyribonucleic acid (ctDNA) by UV/Vis in combination with fluorescence spectroscopy and molecular modeling techniques under physiological conditions (Britton–Robinson buffer solutions, pH = 7.4). By the analysis of UV/Vis spectrum, it was observed that upon binding to ctDNA the anthraquinone chromophore of DNR–D5 could slide into the base pairs. Moreover, the large binding constant indicated DNR–D5 had a high affinity with ctDNA. At the same time, fluorescence spectra suggested that the quenching mechanism of the interaction of DNR–D5 to ctDNA was a static quenching type. The binding constants between DNR–D5 and ctDNA were calculated based on fluorescence quenching data at different temperatures. The negative ∆G implied that the binding process was spontaneous, and negative ∆H and negative ΔS suggested that hydrogen bonding force most likely played a major role in the binding of DNR–D5 to ctDNA. Moreover, the results obtained from molecular docking corroborate the experimental results obtained from spectroscopic investigations.

Keywords

DNR–D5 ctDNA Fluorescence spectroscopy UV/Vis Molecular modeling 

References

  1. 1.
    Yang X, Wang AHJ (1999) Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacol Therapeut 83:181–215CrossRefGoogle Scholar
  2. 2.
    Chaires JB (2006) A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys 453:26–31CrossRefPubMedGoogle Scholar
  3. 3.
    Beraldo H, Garnier-Suillerot A, Tosi L, Lavelles F (1985) Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and antitumor activity. Biochemistry 24:284–289CrossRefPubMedGoogle Scholar
  4. 4.
    Pang JY, Qin Y, Chen WH, Luo GA, Jiang ZH (2005) Synthesis and DNA-binding affinities of monomodified berberines. Bioorgan Med Chem 13:5835–5840CrossRefGoogle Scholar
  5. 5.
    Singh MP, Joseph T, Kumar S, Bathini Y, Lown JW (1992) Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem Res Toxicol 5:597–607CrossRefPubMedGoogle Scholar
  6. 6.
    Andrew WHJ, Giovanni U, Gary JQ, Alexander R (1987) Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2 Å resolution. Biochemistry 26:1152–1163CrossRefGoogle Scholar
  7. 7.
    Laurie LP, Fiona MA, Caroline O, Hare C, Stephen ML, John PB, David JR, John AH (2005) Synthesis of novel DNA cross-linking antitumour agents based on polyazamacrocycles. Bioorgan Med Chem 13:2389–2395CrossRefGoogle Scholar
  8. 8.
    Rajender AK, Rajasekhar DR, Reddy MK, Balakishan G, Shaik TB, Chourasia M, Narahari Sastry G (2009) Remarkable enhancement in the DNA-binding ability of C2-fluoro substituted pyrrolo[2, 1-c][1, 4]benzodiazepines and their anticancer potential. Bioorgan Med Chem 17:1557–1572CrossRefGoogle Scholar
  9. 9.
    Ivandini TA, Honda K, Rao TN, Fujishima A, Einaga Y (2007) Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta 71:648–665CrossRefPubMedGoogle Scholar
  10. 10.
    Zunino F, Di Marco A, Zaccara A, Gambetta RA (1980) The interaction of daunorubicin and doxorubicin with DNA and chromatin. Biochim Biophys Acta 607:206–214PubMedGoogle Scholar
  11. 11.
    Li JF, Dong C (2009) Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochim Acta Part A 71:1938–1943CrossRefGoogle Scholar
  12. 12.
    Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major addtict of the anticancer drug cisplatin. Nature 377:649–652CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439CrossRefPubMedGoogle Scholar
  14. 14.
    Chifotides HT, Dunbar KR (2005) Interactions of Metal–Metal-Bonded Antitumor Active Complexes with DNA Fragments and DNA. Acc Chem Res 38:146–156CrossRefPubMedGoogle Scholar
  15. 15.
    Waring M (1970) Validation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J Mol Biol 54:247–279CrossRefPubMedGoogle Scholar
  16. 16.
    Chaires JB (2006) A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys 453:26–31CrossRefPubMedGoogle Scholar
  17. 17.
    Weiss RB, Sarosy G, Clagett-Carr K, Russo M (1986) Anthracycline analogs: the past, present, and future. Cancer Chemoth Pharm 18:185–197CrossRefGoogle Scholar
  18. 18.
    Htun MT (2009) Photophysical study on Daunorubicin by fluorescence spectroscopy. J Lumin 129:344–348CrossRefGoogle Scholar
  19. 19.
    Wang AHJ (1992) Intercalative drug binding to DNA. Curr Opin Struct Biol 2:361–368CrossRefGoogle Scholar
  20. 20.
    Arcamone F (1981) In doxorubicin, anticancer antibiotics in medicinal chemistry series. Academic, New YorkGoogle Scholar
  21. 21.
    Zagotto G, Gatto B, Moro S, Sissi C, Palumbo M (2001) Anthracyclines: recent developments in their separation and quantitation. J Chromatogr B 764:161–171CrossRefGoogle Scholar
  22. 22.
    Cui FL, Qin LX, Zhang GS, Liu QF, Yao XJ, Lei BL (2008) Interaction of anthracycline disaccharide with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies. J Pharm Biomed Anal 48:1029–1036CrossRefPubMedGoogle Scholar
  23. 23.
    Fang LY, Zhang GS, Li CL, Zheng XC, Zhu LZ, Xiao JJ, Gergely S, Janos N, Chan KK, Wang PG, Sun DX (2006) Discovery of Daunorubicin analogue that exhibits potent antitumor activity and overcomes p-gp-mediated drug resistance. J Med Chem 49:932–941CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang GS, Fang LY, Zhu LZ, Aimiuwu JE, Shen J, Muller MT, Lee GE, Sun DX, Wang PG (2005) Syntheses and biological activities of disaccharide daunorubicins. J Med Chem 48:5269–5278CrossRefPubMedGoogle Scholar
  25. 25.
    Robert FB, Zhong YQ, Fang LY, Seth G, Jie S, Janos N, Zhang GS, Sun DX (2007) Modifying the sugar moieties of Daunorubicin overcomes p-gp-mediated multidrug resistance. Mol Pharm 4:140–153CrossRefGoogle Scholar
  26. 26.
    Fukuda R, Takenaka S, Takagi M (1990) Metal ion assisted DNA-intercalation of crown ether-linked acridine derivatives. J Chem Soc Chem Commun 1028–1030Google Scholar
  27. 27.
    Kapuscinski J, Darzynkiewicz Z (1985) Interactions of antitumor agents Ametantrone and Mitoxantrone (Novatrone) with double-stranded DNA. Biochem Pharmacol 34:4203–4213CrossRefPubMedGoogle Scholar
  28. 28.
    Dang XJ, Nie MY, Tong J, Li HL (1998) Inclusion of the parent molecules of some drugs with beta-cyclodextrin studied by electrochemical and spectrometric method. J Electroanal Chem 448:61–67CrossRefGoogle Scholar
  29. 29.
    Li N, Ma Y, Yang C, Guo L, Yang XR (2005) Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys Chem 116:199–205CrossRefPubMedGoogle Scholar
  30. 30.
    Purcell M, Neault JF, Riahi T (2000) Interaction of taxol with human serum albumin. Biochim Biophys Acta 1478:61–68CrossRefPubMedGoogle Scholar
  31. 31.
    Ibrahim MS (2001) Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA. Anal Chim Acta 443:63–72CrossRefGoogle Scholar
  32. 32.
    Bera R, Sahoo BK, Ghosh KS, Dasgupta S (2008) Studies on the interaction of isoxazolcurcumin with calf thymus DNA. Int J Biol Macromol 42:14–21CrossRefPubMedGoogle Scholar
  33. 33.
    Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121:179–186CrossRefGoogle Scholar
  34. 34.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  35. 35.
    Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170CrossRefPubMedGoogle Scholar
  36. 36.
    Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458CrossRefGoogle Scholar
  37. 37.
    Yue YY, Zhang YH, Zhou L, Qin J, Chen XG (2008) In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modeling. J Photochem Photobiol B 90:26–32PubMedGoogle Scholar
  38. 38.
    Cui FL, Qin LX, Zhang GS, Yao XJ, Du J (2008) Binding of daunorubicin to human serum albumin using molecular modeling and its analytical application. Int J Biol Macromol 42:221–228CrossRefPubMedGoogle Scholar
  39. 39.
    Bi SY, Song DQ, Tian Y, Zhou X, Liu ZY, Zhang HQ (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta Part A 61:629–636CrossRefGoogle Scholar
  40. 40.
    Juziro N, Noriko M (1985) Binding parameters of theophylline and aminophylline to bovine serum albumin. Chem Pharm Bull 33:2522–2524Google Scholar
  41. 41.
    Neméthy G, Scheraga HA (1962) Structure of water and hydrophobic in proteins. J Phys Chem 66:1773–1789CrossRefGoogle Scholar
  42. 42.
    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry 20:3096–3102CrossRefPubMedGoogle Scholar
  43. 43.
    Takenaka S, Ihara T, Takagi M (1990) Bis-9-acridinyl derivative containing a viologen linker chain: electrochemically active intercalator for reversible labelling of DNA. J Chem Soc Chem Commun 1485–1487Google Scholar
  44. 44.
    Xu Y, Jing Y, Cai H, Fang YZ (2004) Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta 516:19–27CrossRefGoogle Scholar
  45. 45.
    Tan J, Wang BC, Zhu LC (2009) DNA binding cytotoxicity apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. Bioorgan Med Chem 17:614–620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yan Lu
    • 1
  • Gong-Ke Wang
    • 1
  • Juan Lv
    • 1
  • Gui-Sheng Zhang
    • 1
  • Qing-Feng Liu
    • 1
  1. 1.School of Chemistry and Environmental ScienceHenan Normal UniversityMu Ye DistrictChina

Personalised recommendations