Skip to main content
Log in

Distinct Photoacidity of Honokiol from Magnolol

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Honokiol, 5,5′-diallyl-2,4′-dihydroxy- biphenyl, by comparison with its isomer magnolol, 5,5′-diallyl- 2,2′-dihydroxy- biphenyl, has been characterized by steady-state and time-resolved spectroscopy as well as 1H NMR. Honokiol shows more complex pH dependence of absorption and fluorescence characteristics compared with magnolol. Honokiol possesses much weaker acidity than magnolol both in the ground and excited states. Its weak photoacidity is similar to that of 4-hydroxy- biphenyl or 4, 4′-dihydroxy- biphenyl rather than 2-hydroxy- biphenyl or 2, 2′-hydroxy- biphenyl. The electron effect and geometry configuration of substitution has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haraguchi H, Ishikawa H, Shirataki N et al (1997) Antiperoxidative activity of neolignans from Magnolia obovata. J Pharm Pharmacol 49(2):209–212

    CAS  PubMed  Google Scholar 

  2. Dikalov S, Losik T, Arbiser JL (2008) Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol 76:589–596

    Article  CAS  PubMed  Google Scholar 

  3. Park J, Lee J, Jung E et al (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 496(123):189–195

    Article  CAS  PubMed  Google Scholar 

  4. Wang JP, Ho TF, Chang LC et al (1995) Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187-induced pleurisy in mice. J Pharm Pharmacol 47:857–860

    CAS  PubMed  Google Scholar 

  5. Ko CH, Chen HH, Lin YR et al (2003) Inhibition of smooth muscle contraction by magnolol and honokiol in porcine trachea. Planta Med 69(6):532–536

    Article  CAS  PubMed  Google Scholar 

  6. Bai X, Cerimele F, Ushio-Fukai M et al (2003) Honokiol, a small molecular weight product, inhibits angiogenesis in Vitro and tumor growth in Vivo. J Bio Chem 278(37):35501–35507

    Article  CAS  Google Scholar 

  7. Chen F, Wang T, Wu Y-F et al (2004) Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 10(23):3459–3463

    CAS  PubMed  Google Scholar 

  8. Li L, Han W, Gu Y et al (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67(10):4894–4903

    Article  CAS  PubMed  Google Scholar 

  9. Fukuyama Y, Nakade K, Minoshima Y et al (2002) Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorg Med Chem Lett 12:1163–1166

    Article  CAS  PubMed  Google Scholar 

  10. Fullmer MJ, Haltiwanger RC, Troupe N et al (1994) Honokiol. Acta Cryst C50:1966–1967

    CAS  Google Scholar 

  11. Wang Y, Cheng MC, Lee JS et al (1983) Molecular and crystal structure of magnolol—C18H18O2. J Chinese Chem Soc 30:215–221

    Google Scholar 

  12. Mikkelsen RB, Asher C, Hicks T (1985) Extracellular pH, transmembrane distribution and cytotoxicity of chlorambucil. Biochem Pharmacol 34:2531–2534

    Article  CAS  PubMed  Google Scholar 

  13. Mahoney BP, Raghunand N, Baggett B et al (2003) Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    Article  CAS  PubMed  Google Scholar 

  14. Čunderlíková B, Bjørklund EG, Pettersen EO et al (2001) pH-dependent spectral properties of HpIX, TPPS2a, mTHPP and mTHPC. Photochem Photobiol 74:246–252

    Article  PubMed  Google Scholar 

  15. Chen JP, Wu S (2004) Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20:2233–2242

    Article  CAS  PubMed  Google Scholar 

  16. Gutowsky HS, Saika A (1953) Dissociation, chemical exchange, and the proton magnetic resonance in some aqueous electrolytes. J Chem Phys 21:1688–1694

    Article  CAS  Google Scholar 

  17. Grunwald E, Loewenstein A (1957) Application of nuclear magnetic resonance to the study of acid-base equilibria. J Chem Phys 27:641–642

    Article  CAS  Google Scholar 

  18. Szakács Z, Hägele G (2004) Accurate determination of low pK values by 1H NMR titration. Talanta 62:819–825

    Article  PubMed  Google Scholar 

  19. Agmon N (2005) Elementary steps in excited-state proton transfer. J Phys Chem A 109:13–35

    Article  CAS  PubMed  Google Scholar 

  20. Arnaut LG, Formosinho SJ (1993) Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions. J Photochem Photobiol A: Chem 75:1–20

    Article  CAS  Google Scholar 

  21. Li HM, Wang YQ, Yan ZY et al (2007) Proton transfer of magnolol in ground and excited states. J Photochem Photobiol A: Chemistry 186:202–211

    Article  CAS  Google Scholar 

  22. Wehry EL, Rogers LB (1965) Application of linear free energy relations to electronically excited states of monosubstituted phenols. J Am Chem Soc 87:4234–4238

    Article  CAS  Google Scholar 

  23. Schulman SG, Vincent WR, Underberg WJM (1981) Acidity of cyanophenols in the S1 and T1 states: the influence of substituent orientation. J Phys Chem 85:4068–4071

    Article  CAS  Google Scholar 

  24. Granucci G, Hynes JT, Millié P et al (2000) A theoretical investigation of excited-State acidity of phenol and cyanophenols. J Am Chem Soc 122:12243–12253

    Article  CAS  Google Scholar 

  25. Zimmerman HE (1998) Meta, ortho effect in organic photochemistry: mechanistic and exploratory organic photochemistry. J Phys Chem A 102:5616–5621

    Article  CAS  Google Scholar 

  26. Agmon N, Retting W, Groth C (2002) Electronic determinants of photoacidity in cyanonaphthols. J Am Chem Soc 124:1089–1096

    Article  CAS  PubMed  Google Scholar 

  27. Kieffer F, Rumpf P (1954) C R Acad Sci, Paris 238:360, 700

    Google Scholar 

  28. Bridges JW, Creaven PJ, Williams RT (1965) The fluorescence of some biphenyl derivatives. Biochem J 96:872–878

    CAS  PubMed  Google Scholar 

  29. Kothainayaki S, Swaminathan M (1997) A study of solvatochromism and proton transfer kinetics of 2, 2′-dihydroxybiphenyl. J Photochem Photobiol A 102:217–221

    Article  CAS  Google Scholar 

  30. Crompton EM, Lewis FD (2004) Positional effects of the hydroxy substituent on the photochemical and photophysical behavior of 3- and 4-hydroxystilbene. Photochem Photobiol Sci 3:660–668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Wang or Yuzhu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, X. & Hu, Y. Distinct Photoacidity of Honokiol from Magnolol. J Fluoresc 21, 265–273 (2011). https://doi.org/10.1007/s10895-010-0714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0714-1

Keywords

Navigation