Advertisement

Journal of Fluorescence

, Volume 21, Issue 1, pp 119–124 | Cite as

Uranyl Soil Extraction and Fluorescence Enhancement by Nanoporous Silica Gel: pH effects

  • Chien-Cheng Chen
  • Dmitry Pestov
  • Jean D. Nelson
  • John E. Anderson
  • Gary Tepper
Original Paper

Abstract

Nanoporous silica gel was employed to extract uranyl from contaminated soil and to enhance the fluorescence intensity and lifetime. The fluorescence lifetime and intensity of uranyl ions absorbed within nanoporous silica gel was measured from pH 1–13. The results show that the uranyl fluorescence intensity can be enhanced by approximately two orders of magnitude by the silica nanoporous matrix from pH 4–12 with the greatest enhancement occurring from pH 4–7. The enhanced fluorescence lifetime can be used in time-gated measurements to help minimize the influence of background environmental fluorophores.

Keywords

Uranium pH effect Micro porous silica Fluorescence Soil 

Notes

Acknowledgment

This work was supported by the US Department of Energy under contract number DE-FG52-06NA27491.

References

  1. 1.
    Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research, DOE/ER-0547T. Pacific Northwest Lab, RichlandGoogle Scholar
  2. 2.
    Morris DE, Allen PG, Berg JM, Chisholm-Brause CJ, Conradson SD, Donohoe RJ, Hess NJ, Musgrave JA, Tait CD (1996) Speciation of uranium in fernald soils by molecular spectroscopic methods: characterization of untreated soils. Environ Sci Technol 30(7):2322–2331CrossRefGoogle Scholar
  3. 3.
    Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74:87–91Google Scholar
  4. 4.
    Bostick BC, Fendorf S, Barnett MO, Jardine PM, Brooks SC (2002) Uranyl surface complexes formed on subsurface media from DOE facilities. Soil Sci Soc Am J 66:99–108CrossRefGoogle Scholar
  5. 5.
    Delemos JL, Bostick BC, Quicksall AN, Landis JD, George CC, Slagowski NL, Rock T, Brugge D, Lewis J, Durant JL (2008) Rapid dissolution of soluble uranyl phases in arid, mine-impacted catchments near church rock, NM. Environ Sci Technol 42(11):3951–3957CrossRefPubMedGoogle Scholar
  6. 6.
    Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6, Part 1):547–569CrossRefGoogle Scholar
  7. 7.
    Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ Sci Technol 38(5):1399–1407CrossRefPubMedGoogle Scholar
  8. 8.
    Robbins JC (1978) Field technique for measurement of uranium in natural-waters. CIM Bull 71(793):61–67Google Scholar
  9. 9.
    Moll H, Geipel G, Brendler V, Bernhard G, Nitsche H (1998) Interaction of uranium(VI) with silicic acid in aqueous solutions studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J Alloy Comp 271–273:765–768CrossRefGoogle Scholar
  10. 10.
    Brachmann A, Geipel G, Bernhard G, Nitsche H (2002) Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 90(3):147–153CrossRefGoogle Scholar
  11. 11.
    Walter M, Arnold T, Geipel G, Scheinost A, Bernhard G (2005) An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces. J Colloid Interface Sci 282(2):293–305CrossRefPubMedGoogle Scholar
  12. 12.
    Bonhoure I, Meca S, Marti V, De Pablo J, Cortina JL (2007) A new time-resolved laser-induced fluorescence spectrometry (TRLFS) data acquisition procedure applied to the uranyl-phosphate system. Radiochim Acta 95(3):165–172CrossRefGoogle Scholar
  13. 13.
    Benesi ACJHA (1959) An Infrared Study of the Water-Silica Gel System. J Phys Chem 63(2):179–182CrossRefGoogle Scholar
  14. 14.
    Tran HH, Roddick FA, O’donnell JA (1999) Comparison of chromatography and desiccant silica gels for the adsorption of metal ions - I. adsorption and kinetics. Water Res 33(13):2992–3000CrossRefGoogle Scholar
  15. 15.
    Guibal E, Lorenzelli R, Vincent T, Lecloirec P (1995) Application of silica-gel to metal-ion sorption - static and dynamic removal of uranyl ions. Environ Technol 16(2):101–114CrossRefGoogle Scholar
  16. 16.
    Michard P, Guibal E, Vincent T, Lecloirec P (1996) Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater 5(5):309–324CrossRefGoogle Scholar
  17. 17.
    Lieser KH, Quandtklenk S, Thybusch B (1992) Sorption of uranyl ions on hydrous silicon dioxide. Radiochim Acta 57(1):45–50Google Scholar
  18. 18.
    Pathak PN, Choppin GR (2007) Sorption of uranyl ion on hydrous silica: Effects of ionic strength and ethylenediaminetetraacetic acid (EDTA). J Radioanal Nucl Chem 272(1):37–43CrossRefGoogle Scholar
  19. 19.
    Lopez M, Birch DJS (1996) Uranyl photophysics on colloidal silica: an alternative luminescence-enhancing medium for uranyl assay. Analyst 121(7):905–908CrossRefGoogle Scholar
  20. 20.
    Gabriel U, Charlet L, Schlapfer CW, Vial JC, Brachmann A, Geipel G (2001) Uranyl surface speciation on silica particles studied by time-resolved laser-induced fluorescence spectroscopy. J Colloid Interface Sci 239(2):358–368CrossRefPubMedGoogle Scholar
  21. 21.
    Pestov D, Chen CC, Nelson JD, Anderson JE, Tepper G (2009) Directed fluorescence sensor element for standoff detection of uranium in soil. Sens Actuators, B 138(1):134–137CrossRefGoogle Scholar
  22. 22.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy Third Edition ed., Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chien-Cheng Chen
    • 1
  • Dmitry Pestov
    • 1
  • Jean D. Nelson
    • 2
  • John E. Anderson
    • 2
  • Gary Tepper
    • 1
  1. 1.Department of Mechanical EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.US Army Engineer Research and Development CenterTopographic Engineering CenterAlexandriaUSA

Personalised recommendations