Skip to main content
Log in

Excitation Wavelength Dependence of Dual Fluorescence of DMABN in Polar Solvents

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady-state absorption, fluorescence excitation and emission spectra of 4-(N,N-dimethylamino)benzonitrile (DMABN) have been measured at room temperature in cyclohexane, 1,4-dioxane, dichloromethane, and acetonitrile solutions. The fluorescence spectra of DMABN are found to exhibit dual emission in 1,4-dioxane, dichloromethane, and acetonitrile solutions and single emission in cyclohexane solution. The effect of solvent polarity and excitation wavelength on the emission spectra has also been studied. The fluorescence excitation spectra of DMABN monitored at the emission bands are different. The presence of two different conformations of the same molecule in the ground state has lead to two close lying excited states; local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the compound. The experimental studies were supported by ab initio density functional theory (DFT) calculations performed at the B3LYP/6-31Gd level of theory. On the basis of the experimental results and our theoretical calculations, we suggest that there are two conformers of DMABN, which are stable in the ground state, equilibrated in solution at room temperature that give rise dual fluorescence upon excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lippert E, Lüder W, Boos H (1962) In: Mangini A (ed) Advances in molecular spectroscopy. Pergamon, Oxford

    Google Scholar 

  2. Platt J (1949) J Chem Phys 17:4840

    Google Scholar 

  3. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Chem Rev 103:3899–4031

    Article  PubMed  Google Scholar 

  4. Lippert E, Lüder W, Moll F, Nägele W, Boos H, Prigge H, Seibold-Blankenstein I (1961) Angew Chem 73:695

    Article  CAS  Google Scholar 

  5. Rettig W, Bliss B, Dirnberger K (1999) Chem Phys Lett 305:8–14

    Article  CAS  Google Scholar 

  6. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Chem Phys Lett 19:315–318

    Article  CAS  Google Scholar 

  7. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Chem Phys Lett 21:212

    Google Scholar 

  8. Grabowski ZR, Rotkiewicz K, Siemarczuk A, Cowley DJ, Baumann W (1979) Nouv J Chim 3:443

    CAS  Google Scholar 

  9. Grabowski ZR, Rotkiewicz K, Siemiarczuk A (1979) J Lumin 18:420

    Article  Google Scholar 

  10. Köhler G, Rechthaler K, Rotokiewicz K, Rettig W (1996) Chem Phys 207:85–101

    Article  Google Scholar 

  11. Gude CC, Rettig W (1998) J Phys Chem A 102:7754–7761

    Article  Google Scholar 

  12. Rettig W, Lutze S (2001) Chem Phys Lett 341:263–271

    Article  CAS  Google Scholar 

  13. Rettig W (1986) Angew Chem, Int Ed Engl 25:971–988

    Article  Google Scholar 

  14. Lippert E, Rettig W, Bonacic-Koutecky V, Heisel F, Miehé JA (1987) Adv Chem Phys 68:1–173, and references therein

    Article  CAS  Google Scholar 

  15. Rettig W (1994) In: Mattay J (ed) Topics in current chemistry, electron-transfer I, vol. 169. Springer, Berlin, pp 253–299

    Google Scholar 

  16. Leinhos U, Kühnle W, Zachariasse KA (1991) J Phys Chem 95:2013–2021

    Article  CAS  Google Scholar 

  17. Schuddeboom W, Jonker SA, Warman JH, Leinhos U, Kühnle W, Zachariasse KA (1992) J PhysChem 96:10809–10819

    CAS  Google Scholar 

  18. Zachariasse KA, von der Haar T, Hebecker A, Leinhos U, Kühnle W (1993) Pure Appl Chem 65:1745–1750

    Article  CAS  Google Scholar 

  19. von der Haar T, Hebecker A, Il’ichev YV, Jiang Y-B, Kühnle W, Zachariasse KA (1995) Recl Trav Chim Pays-Bas 114:430

    Article  Google Scholar 

  20. Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Il’ichev YV, Jiang Y-B, Morawski O, Kühnle W (1996) J Photochem Photobiol, A: Chem 102:59–70

    Article  CAS  Google Scholar 

  21. Il’ichev YV, Kühnle W, Zachariasse KA (1998) J PhysChem A 102:5670–5680

    Google Scholar 

  22. Zachariasse KA (2000) Chem Phys Lett 320:8–13

    Article  CAS  Google Scholar 

  23. Demeter A, Druzhinin S, George M, Haselbach E, Roulin J-L, Zachariasse KA (2000) Chem Phys Lett 323:351–360

    Article  CAS  Google Scholar 

  24. Zachariasse KA, Grobys M, Von der Haar T, Hebecker A, Il’ichev YV, Morawski O, Rückert I, Kühnle W (1997) J Photochem Photobiol A 105:373–383

    Article  CAS  Google Scholar 

  25. Chudoba C, Kummrow A, Dreyer J, Stenger J, Nibbering ETJ, Elsaesser T, Zachariasse KA (1999) Chem Phys Lett 309:357–363

    Article  CAS  Google Scholar 

  26. Daum R, Druzhinin S, Ernst D, Rupp L, Schroeder J, Zachariasse KA (2001) Chem Phys Lett 341:272–278

    Article  CAS  Google Scholar 

  27. Druzhinin SI, Demeter A, Galievsky VA, Yoshihara T, Zachariasse KA (2003) J Phys Chem A 107:8075–8085

    Article  CAS  Google Scholar 

  28. Changenet P, Plaza P, Martin MM, Meyer YH (1997) J Phys Chem A 101:8186–8194

    Article  CAS  Google Scholar 

  29. Su S-G, Simon JD (1988) J Chem Phys 89:908–919

    Article  CAS  Google Scholar 

  30. Okamoto H, Inishi H, Nakamura Y, Kohtani S, Nakagaki R (2001) J Phys Chem A 105:4182–4188

    Article  CAS  Google Scholar 

  31. Kwok WM, Ma C, Matousek P, Parker AW, Phillips D, Toner WT, Towrie M, Umapathy S (2001) J Phys Chem A 105:984–990

    Article  CAS  Google Scholar 

  32. Ma C, Kwok WM, Matousek P, Parker AW, Phillips D, Toner WT, Towrie M (2002) J Phys Chem A 106:3294–3305

    Article  CAS  Google Scholar 

  33. Techert S, Zachariasse KA (2004) J Am Chem Soc 126:5593–5600

    Article  CAS  PubMed  Google Scholar 

  34. Zachariasse KA, Druzhinin SI, Bosch W, Machinek R (2004) J Am Chem Soc 126:1705–1715

    Article  CAS  PubMed  Google Scholar 

  35. Yoshihara T, Druzhinin SI, Zachariasse KA (2004) J Am Chem Soc 126:8535–8539

    Article  CAS  PubMed  Google Scholar 

  36. Fuss W, Pushpa KK, Rettig W, Schmid WE, Trushin SA (2002) Photochem Photobiol Sci 1:255–262

    Article  CAS  PubMed  Google Scholar 

  37. Sudholt W, Sobolewski AL, Domcke W (1999) Chem Phys 250:9–18, and references therein

    Article  Google Scholar 

  38. Serrano-Andrés L, Merchán M, Roos BO, Lindh R (1995) J Am Chem Soc 117:3189–3204

    Article  Google Scholar 

  39. Sobolewski AL, Domcke W (1996) Chem Phys Lett 259:119–127

    Article  CAS  Google Scholar 

  40. Sobolewski AL, Domcke W (1996) Chem Phys Lett 250:428–436

    Article  CAS  Google Scholar 

  41. Sobolewski AL, Sudholt W, Domcke W (1998) J Phys Chem A 102:2716–2722

    Article  CAS  Google Scholar 

  42. Lommatzsch U, Brutschy B (1998) Chem Phys 234:35–57

    Article  CAS  Google Scholar 

  43. Parusel ABJ, Köhler G, Grimme S (1998) J Phys Chem A 102:6297–6306

    Article  CAS  Google Scholar 

  44. Parusel ABJ, Köhler G, Nooijen M (1999) J Phys Chem A 103:4056–4064

    Article  CAS  Google Scholar 

  45. Parusel ABJ, Rettig W, Sudholt W (2002) J Phys Chem A 106:804–815

    Article  CAS  Google Scholar 

  46. Dreyer J, Kummrow A (2000) J Am Chem Soc 122:2577–2585

    Article  CAS  Google Scholar 

  47. Zilberg S, Haas Y (2002) J Phys Chem A 106:1–11

    Article  CAS  Google Scholar 

  48. Rappoport D, Furche F (2004) J Am Chem Soc 126:1277–1284

    Article  CAS  PubMed  Google Scholar 

  49. Köhn A, Hättig C (2004) J Am Chem Soc 126:7399–7410

    Article  PubMed  Google Scholar 

  50. Gedeck P, Schneider S (1997) J Photochem Photobiol, A: Chem 105:165–181, and references therein

    Article  CAS  Google Scholar 

  51. Moro GJ, Nordio PL, Polimeno A (1989) Mol Phys 68:1131–1141

    Article  CAS  Google Scholar 

  52. Kato S, Amatatsu Y (1990) J Chem Phys 92:7241–7257

    Article  CAS  Google Scholar 

  53. Fonseca T, Kim HJ, Hynes JT (1994) J Mol Liq 60:161–200

    Article  CAS  Google Scholar 

  54. Fonseca T, Kim HJ, Hynes JT (1994) J Photochem Photobiol, A: Chem 82:67–79

    Article  CAS  Google Scholar 

  55. Broo A, Zerner MC (1995) Theor Chim Acta 90:383–395

    CAS  Google Scholar 

  56. Gorse A-D, Pesquer M (1995) J Phys Chem 99:4039–4049

    Article  CAS  Google Scholar 

  57. Soujanya T, Saroja G, Samanta A (1995) Chem Phys Lett 236:503–509

    Article  CAS  Google Scholar 

  58. Hayashi S, Ando K, Kato S (1995) J Phys Chem 99:955–964

    Article  CAS  Google Scholar 

  59. Kim HJ, Hynes JT (1997) J Photochem Photobiol, A: Chem 105:337–343

    Article  CAS  Google Scholar 

  60. Mennucci B, Toniolo A, Tomasi J (2000) J Am Chem Soc 122:10621–10630

    Article  CAS  Google Scholar 

  61. Dobkowski J, Wojcik J, Kozminski W, Kołs R, Waluk J, Michl J (2002) J Am Chem Soc 124:2406

    Article  CAS  PubMed  Google Scholar 

  62. Cogan S, Zilberg S, Haas Y (2006) J Am Chem Soc 128:3335–3345

    Article  CAS  PubMed  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.01. Gaussian, Inc., Pittsburgh

    Google Scholar 

  64. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  65. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785

    Article  Google Scholar 

  66. Cammi R, Mennucci B, Tomasi J (2000) J Phys Chem A 104:5631

    Article  CAS  Google Scholar 

  67. Böttler CJF (1973) In: Van Belle OC, Bordewijk P, Rip A (eds) Theory of electric polarization, vol. 1. Elsevier, Amsterdam

    Google Scholar 

  68. Onsager L (1936) J Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  69. Lippert E (1955) Z Naturforsch 10a:541

    CAS  Google Scholar 

  70. Mataga N, Kaifu Y, Koizumi M (1955) Bull Chem Soc Jpn 28:690

    Article  CAS  Google Scholar 

  71. Liptay W (1974) In: Lim EC (ed) Excited states. Academic, New York, p 129

    Google Scholar 

Download references

Acknowledgments

Many thanks are due to Prof. Wondemagegn Mammo for providing us access to the fluorescence measurements facilities, and Prof. V.J.T. Raju for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Redi-Abshiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atsbeha, T., Mohammed, A.M. & Redi-Abshiro, M. Excitation Wavelength Dependence of Dual Fluorescence of DMABN in Polar Solvents. J Fluoresc 20, 1241–1248 (2010). https://doi.org/10.1007/s10895-010-0675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0675-4

Keywords

Navigation