Skip to main content
Log in

On the Emission Intensity of Fluorescent Microspheres in Cardiac Tissue Images

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Formulations for the total fluorescence intensity of fluorescent microspheres in slabs of cardiac tissue were determined experimentally and theoretically. The tissue depth, at which the slab can be considered as a semi-infinite turbid medium, and critical layer thickness, which accounts for the most emission intensity were evaluated to be 8–9 and 3–5 mm, respectively, for the cardiac tissue. When fluorescent microspheres are linearly distributed across the slab depth, the mean absorption of them is proportional to the sum of their normalized total emissions in the slab excited from both sides. The formulations may be used for the fluorescence images analysis of cardiac and other biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marcu L, Grundfest WS, Fishbein MC (2003) Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions. In: Mucek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel Dekker, New York, pp 397–430

    Google Scholar 

  2. Richards-Kortum R, Drezek R, Sokolov K et al (2003) Survey of endogenous biologicalfluorophores. In: Mucek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel Dekker, New York, pp 237–264

    Google Scholar 

  3. van Oosterhout MFM, Willigers HMM, Reneman RS et al (1995) Fluorescent microspheres to measure organ perfusion: validation of simplified sample processing technique. Am J Physiol Heart Circ Physiol 269:H725–H733

    Google Scholar 

  4. van Oosterhout MFM, Printzen FW, Sakurada S et al (1998) Fluorescent microsphrers are superior to radioactive microspheres in chronic blood flow measurements. Am J Physiol Heart Circ Physiol 275:H110–H115

    Google Scholar 

  5. Khoobehi B, Shoelson B, Zhang YZ et al (1997) Fluorescent microsphere imaging: a particle tracking approach to the hemodynamic assessment of the retina and choroids. Ophtal Surg Laser 28:937–947

    CAS  Google Scholar 

  6. Decking UKM, Pai VM, Bennett E et al (2004) High-resolution imaging reveals a limit in spatial resolution of blood flow measurements by microspheres. Am J Physiol Heart Circ Physiol 287:H1132–H1140. doi:10.1152/ajpheart.00119.2004

    Article  CAS  PubMed  Google Scholar 

  7. Bernard SL, Ewen JR, Barlow CH et al (2000) High spatial resolution measurements of organ blood flow in small laboratory animals. Am J Physiol Heart Circ Physiol 279:H2043–H2052

    CAS  PubMed  Google Scholar 

  8. Chernomordik V, Hattery D, Gannot I et al (1999) Inverse method 3-D reconstruction of localized in vivo fluorescence—application to Sjogren syndrom. IEEE J Sele Top Quant Electron 5:930–935. doi:10.1109/2944.796313

    Article  CAS  Google Scholar 

  9. Paithankar DY, Chen AU, Pogue BW et al (1997) Imaging of fluorescent yield and life time reemitted from random media. Appl Opt 36:2260–2272. doi:10.1364/AO.36.002260

    Article  CAS  PubMed  Google Scholar 

  10. Chang J, Graber HL, Barbour RL (1997) Imaging of fluorescence in highly scattering media. IEEE Trans Biomed Eng 44:810–822. doi:10.1109/10.623050

    Article  CAS  PubMed  Google Scholar 

  11. Mendez J (1960) Density and composition of mammalian muscle. Metabolism 9:1845–188

    Google Scholar 

  12. Farrell TF, Patterson MS (2003) Diffusion modeling of fluorescence in tissue. In: Mycek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcell Dekker, New York, pp 29–60

    Google Scholar 

  13. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634. doi:10.1016/j.cbpa.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Sevic-Muraca EM, Houston JP, Gurfinkel M (2002) Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6:642–650. doi:10.1016/S1367-5931(02)00356-3

    Article  Google Scholar 

  15. Turchin VV (2007) Tissue optics: light scattering methods and instrumentation for medical diagnostics. SPIE, Bellingham

    Google Scholar 

  16. Bolin FP, Preuss LE, Taylor RC, Ference RJ (1989) Refractive index of some mammalian tissues using a fiber optic cladding method. Appl Opt 28:2297–2303. doi:10.1364/AO.28.002297

    Article  CAS  PubMed  Google Scholar 

  17. Dunsby C, French PMW (2003) Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D Appl Phys 36:R207–R227. doi:10.1088/0022-3727/36/14/201

    Article  CAS  Google Scholar 

  18. Nighswander-Rempel SP, Kupriyanov V, Shaw RA (2005) Assessment of optical path length in tissue using neodymium and water absorption for application to near-infrared spectroscopy. J Biomed Opt 10:024023. doi:10.1117/1.1896372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part supported by a Manitoba Health Research Council grant. The authors thank Dr. V. Kupriyanov and Dr. J. Rendell, Institute for Biodiagnostics, NRC, Canada, for helpful discussion. Surgical staff of Institute of Biodiagnostics A. Turner, S. Germscheid, L. Gregorash and R. Mariash are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Gussakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gussakovsky, E., Yang, Y. On the Emission Intensity of Fluorescent Microspheres in Cardiac Tissue Images. J Fluoresc 20, 857–863 (2010). https://doi.org/10.1007/s10895-010-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0629-x

Keywords

Navigation