Skip to main content
Log in

Fluorescence Enhancement of the Silver Nanoparticales – Curcumin - Cetyltrimethylammonium Bromide-nucleic Acids System and its Analytical Application

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It is found that silver nanoparticles (AgNPs) can further enhance the fluorescence intensity of curcumin (CU) - cetyltrimethylammonium bromide (CTAB) – nucleic acids and improve its anti-photobleaching activity. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 2.0 × 10−8–1.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 2.0 × 10−8–1.0 × 10−6 g mL−1 for calf thymus DNA (ctDNA), 1.0 × 10−8–1.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits (S/N = 3) are 8.0 ng mL−1, 10.5 ng mL−1 and 5.8 ng mL−1, respectively. This method is used for determining the concentration of DNA in actual sample with satisfactory results. The interaction mechanism is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dick LA, McFarland AD, Haynes CL, Duyne RPV (2002) Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J Phys Chem B 106:853–860. doi:10.1021/jp013638l

    Article  Google Scholar 

  2. Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141. doi:10.1126/science.294.5540.137

    Article  PubMed  Google Scholar 

  3. Geerts H, Brabander MD, Nuydens R (1991) Nanovid microscopy. Nature 351:765–766. doi:10.1038/351765a0

    Article  PubMed  Google Scholar 

  4. Hainfeld JF, Powell RD (2000) New frontiers in gold labeling. J Histochem Cytochem 48:471–480

    PubMed  Google Scholar 

  5. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735. doi:10.1126/science.1140484

    Article  PubMed  Google Scholar 

  6. Zhang JG, Gao Y, Alvarez-Puebla RA, Buriak JM, Fenniri H, Buriak JM (2006) Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Adv Mater 18:3233–3237. doi:10.1002/adma.200601368

    Article  Google Scholar 

  7. Yin HQ, Langford R, Burrel RE (1999) Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. J Burn Care Rehabil 20:195–200. doi:10.1097/00004630-199905000-00006

    Article  PubMed  Google Scholar 

  8. Tian J, Wong KY, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PH (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136. doi:10.1002/cmdc.200600171

    PubMed  Google Scholar 

  9. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi:10.1186/1477-3155-3-6

    Article  Google Scholar 

  10. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of conducting silver wire. Nature 391:775–778. doi:10.1038/35826

    Article  PubMed  Google Scholar 

  11. Xiong YJ, Xie Y, Wu CZ, Yang J, Li ZQ, Xu F (2003) Formation of silver nanowires through a sandwiched reduction process. Adv Mater 15:405–408. doi:10.1002/adma.200390092

    Article  Google Scholar 

  12. Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212. doi:10.1021/ja031931o

    Article  PubMed  Google Scholar 

  13. Sun LL, Wei G, Song YH, Liu ZG, Wang L, Li Z (2006) Fabrication of silver nanoparticles ring templated by plasmid DNA. Appl Surf Sci 252:4969–4974. doi:10.1016/j.apsusc.2005.07.016

    Article  Google Scholar 

  14. Pan Q, Zhang RY, Bai YF, He NY, Lu ZH (2008) An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Anal Biochem 375:179–186. doi:10.1016/j.ab.2007.12.006

    Article  PubMed  Google Scholar 

  15. Zheng JH, Wu X, Wang MQ, Ran DH, Xu W, Yang JH (2008) Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application. Talanta 74:526–532. doi:10.1016/j.talanta.2007.06.014

    Article  PubMed  Google Scholar 

  16. Bao P, Frutos AG, Greef C, Lahiri J, Muller U, Peterson TC, Warden L, Xie XY (2002) High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal Chem 74:1792–1797. doi:10.1021/ac0111964

    Article  PubMed  Google Scholar 

  17. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Banerjee turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87:44–53

    Google Scholar 

  18. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. doi:10.1016/j.lfs.2005.12.007

    Article  PubMed  Google Scholar 

  19. Ono K, Hasegawa K, Naike H, Yamada MJ (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750. doi:10.1002/jnr.20025

    Article  PubMed  Google Scholar 

  20. Balasubramanian KJ (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. Agric Food Chem 54(10):3512–3520. doi:10.1021/jf0603533

    Article  Google Scholar 

  21. Park SY, Kim DS (2002) Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod 56:1227–1231. doi:10.1021/np010039x

    Article  Google Scholar 

  22. Shishodia S, Potdar P, Gairola CG, Aggarwal BB (2003) Curcumin (diferuloylmethane) down- regulates cigarette smoke-induced NF- kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24:1269–1279. doi:10.1093/carcin/bgg078

    Article  PubMed  Google Scholar 

  23. Khopde SM, Priyadarsini KI, Palit DK, Mukherjee T (2000) Effect of solvent on the excited state photophysical properties of curcumin. Photochem Photobiol 72:625–631. doi:10.1562/0031-8655(2000)072<0625:EOSOTE>2.0.CO;2

    Article  PubMed  Google Scholar 

  24. Tonnesen HH, Karlsen J, Mostad A (1982) Structural studies of curcuminoids. 1. The crystal structure of curcumin. Acta Chem Scand B 36:475–479. doi:10.3891/acta.chem.scand.36b-0475

    Article  Google Scholar 

  25. Zsila F, Bikadi Z, Simonyi M (2003) Molecular basis of the Cotton effects induced by the binding of curcumin to human serum albumin. Tetrahedron Asymmetry 14:2433–2444. doi:10.1016/S0957-4166(03)00486-5

    Article  Google Scholar 

  26. Pedersen U, Rasmussen PB, Lawesson SO (1985) Synthesis of naturally occurring curcuminoids and related-compounds. Liebigs Ann Chem 8:1557–1569. doi:10.1002/jlac.198519850805

    Article  Google Scholar 

  27. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905. doi:10.1021/ac9712310

    Article  PubMed  Google Scholar 

  28. Zhang ZL, Huang WM, Tang JL, Wang EK, Dong SJ (2002) Conformational transition of DNA induced by cationic lipid vesicle in acidic solution: spectroscopy investigation. Biophys Chem 97:7–16. doi:10.1016/S0301-4622(02)00006-6

    Article  PubMed  Google Scholar 

  29. Zhou YL, Li YZ (2004) Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods. Biophys Chem 107:273–281

    Article  PubMed  Google Scholar 

  30. Nakajima A (1983) A study on the system of pyrene and β-cyclodextrin in aqueous solution utilizing the intensity enhancement phenomenon. Spectrochim Acta A 39(10):913–915

    Article  Google Scholar 

  31. Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochem Biophys Acta 515(4):367–394

    PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by Natural Science Foundations of China (20575035) and Shandong Province(Z2008B04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Wu or Qiuxia Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Wu, X., Xu, W. et al. Fluorescence Enhancement of the Silver Nanoparticales – Curcumin - Cetyltrimethylammonium Bromide-nucleic Acids System and its Analytical Application. J Fluoresc 20, 843–850 (2010). https://doi.org/10.1007/s10895-010-0627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0627-z

Keywords

Navigation