Skip to main content
Log in

Dynamics of Bacteriophage R17 Probed with a Long-Lifetime Ru(II) Metal-Ligand Complex

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The metal-ligand complex, [Ru(2,2′-bipyridine)2(4,4′-dicarboxy-2,2′-bipyridine)]2+ (RuBDc), was used as a spectroscopic probe for studying macromolecular dynamics. RuBDc is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes’ shift, and highly polarized emission. To further show the usefulness of this luminophore for probing macromolecular dynamics, we examined the intensity and anisotropy decays of RuBDc when conjugated to R17 bacteriophage using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and we obtained a longer mean lifetime at 4 °C (<τ> = 491.8 ns) as compared to that at 25 °C (<τ> = 435.1 ns). The anisotropy decay data showed a single rotational correlation time, which is typical for a spherical molecule, and the results showed a longer rotational correlation time at 4 °C (2,574.9 ns) than at 25 °C (2,070.1 ns). The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc has significant potential for studying hydrodynamics of biological macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lakowicz JR, Gryczynski I, Piszczek G, Tolosa L, Nair R, Johnson ML, Nowaczyk K (2000) Microsecond dynamics of biological molecules. Methods Enzymol 323:473–509

    Article  CAS  PubMed  Google Scholar 

  2. Terpetschnig E, Szmacinski H, Lakowicz JR (1997) Long-lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 278:295–321

    Article  CAS  PubMed  Google Scholar 

  3. Piszczek G (2006) Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics. Arch Biochem Biophys 453:54–62

    Article  CAS  PubMed  Google Scholar 

  4. Castellano FN, Dattelbaum JD, Lakowicz JR (1998) Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem 255:165–170

    Article  CAS  PubMed  Google Scholar 

  5. Guo X-Q, Castellano FN, Li L, Szmacinski H, Lakowicz JR, Sipior J (1997) A long-lived, highly luminescent Re(I) metal-ligand complex as a biomolecular probe. Anal Biochem 254:179–186

    Article  CAS  PubMed  Google Scholar 

  6. Murtaza Z, Herman P, Lakowicz JR (1999) Synthesis and spectral characterization of a long-lifetime osmium(II) metal-ligand complex: a conjugatable red dye for applications in biophysics. Biophys Chem 80:143–151

    Article  CAS  PubMed  Google Scholar 

  7. Szmacinski H, Terpetschnig E, Lakowicz JR (1996) Synthesis and evaluation of Ru-complexes as anisotropy probes for protein hydrodynamics and immunoassays of high-molecular-weight antigens. Biophys Chem 62:109–120

    Article  CAS  PubMed  Google Scholar 

  8. Szmacinski H, Castellano FN, Terpetschnig E, Dattelbaum JD, Lakowicz JR, Meyer GJ (1998) Long-lifetime Ru(II) complexes for the measurement of high molecular weight protein hydrodynamics. Biochim Biophys Acta 1383:151–159

    CAS  PubMed  Google Scholar 

  9. Terpetschnig E, Szmacinski H, Malak H, Lakowicz JR (1995) Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys J 68:342–350

    Article  CAS  PubMed  Google Scholar 

  10. Terpetschnig E, Dattelbaum JD, Szmacinski H, Lakowicz JR (1997) Synthesis and spectral characterization of a thiol-reactive long-lifetime Ru(II) complex. Anal Biochem 251:241–245

    Article  CAS  PubMed  Google Scholar 

  11. Kang JS, Piszczek G, Lakowicz JR (2002) High-molecular-weight protein hydrodynamics studied with a long-lifetime metal-ligand complex. Biochim Biophys Acta 1597:221–228

    CAS  PubMed  Google Scholar 

  12. Guo X-Q, Castellano FN, Li L, Lakowicz JR (1998) A long-lifetime Ru(II) metal-ligand complex as a membrane probe. Biophys Chem 71:51–62

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Szmacinski H, Lakowicz JR (1997) Synthesis and luminescence spectral characterization of long-lifetime lipid metal-ligand probes. Anal Biochem 244:80–85

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Castellano FN, Gryczynski I, Lakowicz JR (1999) Long-lifetime lipid rhenium metal-ligand complex for probing membrane dynamics on the microsecond timescale. Chem Phys Lipids 99:1–9

    Article  CAS  PubMed  Google Scholar 

  15. Lakowicz JR, Malak H, Gryczynski I, Castellano FN, Meyer GJ (1995) DNA dynamics observed with long lifetime metal-ligand complexes. Biospectroscopy 1:163–168

    Article  CAS  Google Scholar 

  16. Malak H, Gryczynski I, Lakowicz JR, Meyers GJ, Castellano FN (1997) Long-lifetime metal-ligand complexes as luminescent probes for DNA. J Fluoresc 7:107–112

    Article  CAS  Google Scholar 

  17. Kang JS, Abugo OO, Lakowicz JR (2002) Dynamics of supercoiled and linear pTZ18U plasmids observed with a long-lifetime metal-ligand complex. Biopolymers 67:121–128

    Article  CAS  PubMed  Google Scholar 

  18. Kang JS, Abugo OO, Lakowicz JR (2002) Dynamics of supercoiled and relaxed pTZ18U plasmids probed with a long-lifetime metal-ligand complex. J Biochem Mol Biol 35:389–394

    CAS  PubMed  Google Scholar 

  19. Kang JS, Son BW, Choi HD, Yoon JH, Son WS (2005) Dynamics of supercoiled and linear pBluscript II SK(+) phagemids probed with a long-lifetime metal-ligand complex. J Biochem Mol Biol 38:104–110

    CAS  PubMed  Google Scholar 

  20. Haugen GR, Lytle FE (1981) Quantitation of fluorophores in solution by pulsed laser excitation of time-filtered detection. Anal Chem 53:1554–1559

    Article  CAS  Google Scholar 

  21. Boedtker H, Gesteland RF (1975) Physical properties of RNA bacteriophages and their RNA. In: Zinder ND (ed) RNA phages. Cold Spring Harbor Laboratory, New York, pp 1–28

    Google Scholar 

  22. Gesteland RF, Boedtker H (1964) Some physical properties of bacteriophage R17 and its ribonucleic acid. J Mol Biol 8:496–507

    Article  CAS  PubMed  Google Scholar 

  23. Camerini-Otero RD, Franklin RM, Day LA (1974) Molecular weights, dispersion of refractive index increments, and dimensions from transmittance spectrophotometry. Bacteriophages R17, T7, and PM2, and tobacco mosaic virus. Biochemistry 13:3763–3773

    Article  CAS  PubMed  Google Scholar 

  24. Camerini-Otero RD, Pusey PN, Koppel DE, Schaefer DW, Franklin RM (1974) Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses: R17, Qβ BSV, PM2, and T7. II. Diffusion coefficients, molecular weights, solvation, and particle dimensions. Biochemistry 13:960–970

    Article  CAS  PubMed  Google Scholar 

  25. Enger MD, Stubbs EA, Mitra S, Kaesberg P (1963) Biophysical characteristics of the RNA-containing bacterial virus R17. Proc Natl Acad Sci U S A 49:857–860

    Article  CAS  PubMed  Google Scholar 

  26. Sipior J, Carter JM, Lakowicz JR, Rao G (1996) Single quantum well light-emitting diodes demonstrated as excitation sources for nanosecond phase modulation fluorescence lifetime measurements. Rev Sci Instr 67:3795–3798

    Article  CAS  Google Scholar 

  27. Kolakofsky D (1971) Preparation of coliphage RNA. Methods Mol Biol 1:267–277

    CAS  Google Scholar 

  28. Valegård K, Unge T, Montelius I, Strandberg B (1986) Purification, crystallization and preliminary X-ray data of the bacteriophage MS2. J Mol Biol 190:587–591

    Article  PubMed  Google Scholar 

  29. Weber K, Konigsberg W (1975) Proteins of the RNA phages. In: Zinder ND (ed) RNA phages. Cold Spring Harbor Laboratory, New York, pp 51–84

    Google Scholar 

  30. Gratton E, Limkeman M, Lakowicz JR, Maliwal BP, Cherek H, Laczko G (1984) Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys J 46:479–486

    Article  CAS  PubMed  Google Scholar 

  31. Lakowicz JR, Laczko G, Cherek H, Gratton E, Limkeman M (1984) Analysis of fluorescence decay kinetics from variable-frequency phase-shift and modulation data. Biophys J 46:463–477

    Article  CAS  PubMed  Google Scholar 

  32. Lakowicz JR, Gryczinski I (1991) Frequency-domain fluorescence spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, volume 1: techniques. Plenum, New York, pp 293–355

    Google Scholar 

  33. Lakowicz JR, Cherek H, Kusba J, Gryczinski I, Johnson ML (1993) Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy. J Fluoresc 3:103–116

    Article  CAS  Google Scholar 

  34. Vasquez C, Granboulan N, Franklin RM (1966) Structure of the ribonucleic acid bacteriophage R17. J Bacteriol 92:1779–1786

    CAS  PubMed  Google Scholar 

  35. Zipper P, Kratky O (1971) An X-ray small angle study of the bacteriophages fr and R17. Eur J Biochem 18:1–9

    Article  CAS  PubMed  Google Scholar 

  36. Fischbach FA, Harrison PM, Anderegg JW (1965) An X-ray scattering study of the bacterial virus R17. J Mol Biol 13:638–645

    Article  CAS  Google Scholar 

  37. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, p 367

    Google Scholar 

  38. Franklin RM, Granboulan N (1966) Ultrastructure of Escherichia coli cells infected with bacteriophage R17. J Bacteriol 91:834–848

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported for two years by Pusan National University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Sook Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.S., Kim, J.H., Son, B.W. et al. Dynamics of Bacteriophage R17 Probed with a Long-Lifetime Ru(II) Metal-Ligand Complex. J Fluoresc 20, 713–718 (2010). https://doi.org/10.1007/s10895-010-0612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0612-6

Keywords

Navigation