Skip to main content
Log in

Validation of TPEN as a Zinc Chelator in Fluorescence Probing of Calcium in Cells with the Indicator Fura-2

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fura-2 is widely used as a fluorescent probe to monitor dynamic changes in cytosolic free calcium in cells, where Ca2+ can enter through several types of voltage-operated or ligand-gated channels. However, Fura-2 is also sensitive to other metal ions, such as zinc, which may be involved in ionic channels and receptors. There is interest, in particular, in studying the synapses between mossy fibers and CA3 pyramidal cells which contain both calcium and high quantities of free or loosely bound zinc. We have found, through fluorescence probing, that endogenous zinc inhibits mossy fiber calcium transients. However, since these results might be explained by an effect of the zinc chelator N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) on the spectral properties of Fura-2, we have carried out a validation of the method through fluorescence excitation spectra of the complex Fura-2/calcium, and show that TPEN does not affect these spectra. This supports the idea that the observed calcium enhancement is related to a zinc inhibition of presynaptic calcium mechanisms, and confirms the use of the chelator TPEN as a general procedure for the biophysical study of Ca(II) in the presence of Zn(II) using Fura-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440

    CAS  PubMed  Google Scholar 

  2. Roe MW, Lemasters JJ, Herman B (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11:63

    Article  CAS  PubMed  Google Scholar 

  3. Umezawa Y (2008) Optical probes for molecular processes in live cells. Ann Rev Anal Chem 1:397

    Article  CAS  Google Scholar 

  4. Gryczynski Z, Gryczynski I, Lakowicz JR (2003) Fluorescence sensing methods. Methods Enzymol 360:44

    Google Scholar 

  5. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY (2007) Calcium Green Flash as a genetically targeted small-molecule indicator. Nature Chem Biol 3:423

    Article  CAS  Google Scholar 

  6. Bannwarth M, Correia IR, Sztretye M, Pouvreau S, Fellay C, Aebischer A, Royer L, Rios E, Johnsson K (2009) Indo-1 derivatives for local calcium sensing. ACS Chem Biol 4:179

    Article  CAS  PubMed  Google Scholar 

  7. Vega MT, Villalobos C, Garrido B, Gandia L, Bulbena O, Garcia-Sancho J, Garcia AG, Artalejo AR (1994) Permeation by zinc of bovine chromaffin cell calcium channels: relevance to secretion. Pflügers Arch — Eur J Physiol 429:231–239

    Article  CAS  Google Scholar 

  8. Fredrickson CJ, Koh JY, Busih AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449

    Article  Google Scholar 

  9. Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91

    Article  CAS  PubMed  Google Scholar 

  10. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  CAS  PubMed  Google Scholar 

  11. Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734

    Article  CAS  PubMed  Google Scholar 

  12. Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736

    Article  CAS  PubMed  Google Scholar 

  13. Frederickson C, Kasarskis E, Ringo D, Frederickson RA (1987) Quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91

    Article  CAS  PubMed  Google Scholar 

  14. Harrison NL, Gibbons SJ (1994) Zn2+: an endogenous modulator of ligand— and voltage-gated ion channels. Neuropharmacology 33:935

    Article  CAS  PubMed  Google Scholar 

  15. Xie XM, Smart TG (1991) A physiological-role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521

    Article  CAS  PubMed  Google Scholar 

  16. Arslan P, Di Virgilio F, Beltrame M, Tsien RY, Pozzan T (1985) Cytosolic Ca2+ homeostasis in Ehrlich, Yoshida carcinomas. J Biol Chem 260:2719

    CAS  PubMed  Google Scholar 

  17. Sensi S, Canzoniero L, Yu S, Ying H, Koh J, Kerchner G et al (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17:9554

    CAS  PubMed  Google Scholar 

  18. Quinta-Ferreira ME, Matias CM (2004) Hippocampal mossy fiber calcium transients are maintained during long-term potentiation and are inhibited by endogenous zinc. Brain Res 1004:52

    Article  CAS  PubMed  Google Scholar 

  19. Busselberg D, Michael D, Evans ML, Carpenter DO, Haas HL (1992) Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells. Brain Res 593:77

    Article  CAS  PubMed  Google Scholar 

  20. Busselberg D, Platt B, Michael D, Carpenter DO, Haas HL (1994) Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+. J Neurophysiol 71:1491

    CAS  PubMed  Google Scholar 

  21. Magistretti J, Castelli L, Taglietti V, Tanzi F (2003) Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons. Neuroscience 117:249

    Article  CAS  PubMed  Google Scholar 

  22. Bloc A, Cens T, Cruz H, Dunant Y (2000) Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels. J Physiol 529:723

    Article  CAS  PubMed  Google Scholar 

  23. Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270:2473–2477

    Article  CAS  PubMed  Google Scholar 

  24. Snitsarev VA, McNulty TJ, Taylor CW (1996) Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys J 71:1048

    Article  CAS  PubMed  Google Scholar 

  25. Hinkle PM, Shanshala ED II, Nelson EJ (1992) Measurement of intracellular cadmium with fluorescent dyes. J Biol Chem 267:25553

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Emília Quinta-Ferreira or Hugh D. Burrows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matias, C.M., Sousa, J.M., Quinta-Ferreira, M.E. et al. Validation of TPEN as a Zinc Chelator in Fluorescence Probing of Calcium in Cells with the Indicator Fura-2. J Fluoresc 20, 377–380 (2010). https://doi.org/10.1007/s10895-009-0539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0539-y

Keywords

Navigation