Journal of Fluorescence

, Volume 20, Issue 1, pp 67–72 | Cite as

Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles

  • Erik Herz
  • Thomas Marchincin
  • Laura Connelly
  • Daniel Bonner
  • Andrew Burns
  • Steven Switalski
  • Ulrich Wiesner
Original Paper

Abstract

Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.

Keywords

Fluorescent nanoprobe Nanoparticle Fluorescence Relative quantum yield Silica 

References

  1. 1.
    Herschel SJFW (1845) On a case of superficial colour presented by a homogeneous liquid internally colourless. Phil Trans Roy Soc London 135:143–145CrossRefGoogle Scholar
  2. 2.
    Burns A, Ow H, Wiesner U (2006) Fluorescent core–shell silica nanoparticles: towards Lab on a Particle architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042CrossRefPubMedGoogle Scholar
  3. 3.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New YorkGoogle Scholar
  4. 4.
    Rampazzo E, Bonacchi S, Montalti M, Prodi L, Zaccheroni N (2007) Self-organizing core-shell nanostructures: spontaneous accumulation of dye in the core of doped silica nanoparticles. J Am Chem Soc 129:14251–14256CrossRefPubMedGoogle Scholar
  5. 5.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  6. 6.
    Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417CrossRefPubMedGoogle Scholar
  7. 7.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  8. 8.
    Wang F, Tan WB, Zhang Y, Fan W, Wang M (2006) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1–R13CrossRefGoogle Scholar
  9. 9.
    Bosma G, Pathmamanoharan C, de Hoog EHA, Kegel WK, van Blaaderen A, Lekkerkerker HNW (2002) Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J Colloid Interf Sci 245:292–300CrossRefGoogle Scholar
  10. 10.
    Pagliaro M, Ciriminna R, Man MWC, Campestrini S (2006) Better chemistry through ceramics: the physical bases of the outstanding chemistry of ORMOSIL. J Phys Chem B 110:1976–1988CrossRefPubMedGoogle Scholar
  11. 11.
    Choi J, Burns A, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel W, Wiesner U, Nikitin AY (2007) Core-shell silica nanoparticles as fluorescent biological labels for nanomedicine applications. J Biomed Opt 12(6):1–11Google Scholar
  12. 12.
    Graf C, Schartl W, Fischer K, Hugenberg N, Schmidt M (1999) Dye-labeled poly(organosiloxane) microgels with core-shell architecture. Langmuir 15:6170–6180CrossRefGoogle Scholar
  13. 13.
    Zhao X, Bagwe RP, Tan W (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173–176CrossRefGoogle Scholar
  14. 14.
    Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2:723–726CrossRefPubMedGoogle Scholar
  15. 15.
    Fuller JE, Zugates GT, Ferreira LS, Ow H, Nguyen NN, Wiesner U, Langer RS (2008) Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 29(10):1526–1532CrossRefPubMedGoogle Scholar
  16. 16.
    E. Herz, A. Burns, S. Lee, P. Sengupta, D. Bonner, H. Ow, C. Liddell, B. Baird and U. Wiesner, (2006), Fluorescent core-shell silica nanoparticles: an alternative radiative materials platform, Proceedings of SPIE Vol. 6096. doi:10.1117/12.661782
  17. 17.
    Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20(8):2677–2684CrossRefGoogle Scholar
  18. 18.
    Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5(1):113–117CrossRefPubMedGoogle Scholar
  19. 19.
    Williams ATR, Winfield SA (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071CrossRefGoogle Scholar
  20. 20.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69CrossRefGoogle Scholar
  21. 21.
    Nyffenegger R, Quellet C, Ricka J (1993) Synthesis of fluorescent, monodisperse, colloidal silica particles. J Colloid Interf Sci 159:150–157CrossRefGoogle Scholar
  22. 22.
    Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229–235CrossRefGoogle Scholar
  23. 23.
    Sulfuric Acid vs. Refractive Index (20°C), (Mettler Toledo, 2008) p. http://us.mt.com/mt/ed/appEdStyle/Sulfuric_Acid_re_e_0x000248e10002599200076416.jsp
  24. 24.
    Stated error in quantum yield of quinine sulfate dihydrate NIST reference material (SRM 936) given at 10%Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Erik Herz
    • 1
  • Thomas Marchincin
    • 2
  • Laura Connelly
    • 1
    • 3
  • Daniel Bonner
    • 1
    • 4
  • Andrew Burns
    • 1
    • 5
  • Steven Switalski
    • 2
  • Ulrich Wiesner
    • 1
  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  2. 2.Research LaboratoriesEastman Kodak CompanyRochesterUSA
  3. 3.University of California, San DiegoLa JollaUSA
  4. 4.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.GE Global ResearchNiskayunaUSA

Personalised recommendations