Skip to main content
Log in

Sequence Dependent Femtosecond-Resolved Hydration Dynamics in the Minor Groove of DNA and Histone—DNA Complexes

  • Original paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Understanding the sequence dependent molecular recognition of DNA is crucial for the rational design of many drugs. Femtosecond resolved studies on the hydration dynamics of the dodecamer duplexes having sequences (CGCGAATTCGCG)2 and (CGCAAATTTGCG)2, and their complexes with the nucleic protein histone 1 (H1) reveal significant correlation of the molecular recognition of the DNA and DNA-protein complexes with the dynamics of hydration. The different molecular recognition of DNA and DNA-protein complexes is also borne out by circular dichroism (CD) and fluorescence detected CD measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Pjura PE, Grzeskowiak K, Dickerson RE (1987) Binding of Hoechst 33258 to the minor groove of B-DNA. J Mol Biol 197:257–271. doi:10.1016/0022-2836(87)90123-9

    Article  CAS  PubMed  Google Scholar 

  2. Edwards KJ, Brown DG, Spink N, Skelly JV, Neidle S (1992) Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2 An examination of propeller twist and minor-groove water structure at 2·2 Å resolution. J Mol Biol 226:1161–1173. doi:10.1016/0022-2836(92)91059-X

    Article  CAS  PubMed  Google Scholar 

  3. Lane AN, Jenkins TC, Frenkiel TA (1997) Hydration and solution structure of d(CGCAAATTTGCG)2and its complex with propamidine from NMR and molecular modelling. Biochim Biophys Acta 1350:205–220. doi:10.1016/S0167-4781(96)00161-3

    CAS  PubMed  Google Scholar 

  4. Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB (1997) Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257. doi:10.1006/jmbi.1997.1170

    Article  CAS  PubMed  Google Scholar 

  5. Han F, Taulier N, Chalikian TV (2005) Association of the minor groove binding drug Hoechst 33258 with d(CGCGAATTCGCG)2: volumetric, calorimetric, and spectroscopic characterizations. Biochemistry 44:9785–9794. doi:10.1021/bi047374f

    Article  CAS  PubMed  Google Scholar 

  6. Privalov PL, Dragan AI, Crane-Robinson C, Breslauer KJ, Remeta DP, Minetti CASA (2007) What drives proteins into the major or minor grooves of DNA? J Mol Biol 365:1–9. doi:10.1016/j.jmb.2006.09.059

    Article  CAS  PubMed  Google Scholar 

  7. Pal SK, Zhao L, Zewail AH (2003) Water at DNA surfaces: ultrafast dynamics in minor groove recognition. Proc Natl Acad Sci USA 100:8113–8118. doi:10.1073/pnas.1433066100

    Article  CAS  PubMed  Google Scholar 

  8. Pal SK, Zewail AH (2004) Dynamics of water in biological recognition. Chem Rev 104:2099–2123. doi:10.1021/cr020689l

    Article  CAS  PubMed  Google Scholar 

  9. Vlieghe D, Sponer J, Meervelt LV (1999) Crystal structure of d(GGCCAATTGG) complexed with DAPI reveal novel binding mode. Biochemisty 38:16443–16451. doi:10.1021/bi9907882

    Article  CAS  Google Scholar 

  10. Quintana JR, Lipanov AA, Dickerson RE (1991) Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G. Biochemistry 30:10294–10306. doi:10.1021/bi00106a030

    Article  CAS  PubMed  Google Scholar 

  11. Wood AW, Nunn CM, Czarny A, Boykin DW, Neidle S (1995) Variability in DNA minor groove width recognised by ligand binding: the crystal structure of a bis-benzimidazole compound bound to the DNA duplex d(CGCGAATTCGCG)2. Nucleic Acids Res 23:3678–3684. doi:10.1093/nar/23.18.3678

    Article  CAS  PubMed  Google Scholar 

  12. Brown DG, Sanderson MR, Garman E, Neidle S (1992) Crystal structure of a berenil-d(CGCAAATTTGCG) complex: an example of drug-DNA recognition based on sequence-dependent structural features. J Mol Biol 226:481–490. doi:10.1016/0022-2836(92)90962-J

    Article  CAS  PubMed  Google Scholar 

  13. Spink N, Brown DG, Skelly JV, Neidle S (1994) Sequence-dependent effects in drug-DNA interaction: the crystal structure of Hoechst 33258 bound to the d(CGCAAATTTGCG)2 duplex. Nucleic Acids Res 22:1607–1612. doi:10.1093/nar/22.9.1607

    Article  CAS  PubMed  Google Scholar 

  14. Jin R, Breslauer KJ (1988) Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)] poly[d(AT)]duplex. Proc Natl Acad Sci USA 85:8939–8942. doi:10.1073/pnas.85.23.8939

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee D, Pal SK (2007) Direct observation of essential DNA dynamics: melting and reformation of the DNA minor groove. J Phys Chem B 111:10833–10838. doi:10.1021/jp074697n

    Article  CAS  PubMed  Google Scholar 

  16. O’Connor DV, Philips D (1984) Time correlated single photon counting. Academic, London

    Google Scholar 

  17. Banerjee D, Pal SK (2007) Simultaneous binding of minor groove binder and intercalator to dodecamer DNA: importance of relative orientation of donor and acceptor in FRET. J Phys Chem B 111:5047–5052. doi:10.1021/jp0715427

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee D, Pal SK (2006) Ultrafast charge transfer and solvation of DNA minor groove binder: Hoechst 33258 in restricted environments. Chem Phys Lett 432:257–262. doi:10.1016/j.cplett.2006.10.018

    Article  CAS  Google Scholar 

  19. Sarkar R, Pal SK (2007) Interaction of Hoechst 33258 and ethidium with histone1-DNA condensates. Biomacromolecules 8:3332–3339. doi:10.1021/bm700690p

    Article  CAS  PubMed  Google Scholar 

  20. Zhong D, Pal SK, Zewail AH (2001) Femtosecond studies of protein-DNA binding and dynamics: histone I. ChemPhysChem 2:219–227. doi:10.1002/1439-7641(20010417)2:4<219::AID-CPHC219>3.0.CO;2-K

    Article  CAS  Google Scholar 

  21. Parkinson JA, Barber J, Douglas KT, Rosamond J, Sharples D (1990) Minor-groove recognition of self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: a high field NMR study. Biochemistry 29:10181–10190. doi:10.1021/bi00496a005

    Article  CAS  PubMed  Google Scholar 

  22. Privé GG, Yanagi K, Dickerson RE (1991) Structure of the B-DNA decamer C-C-A-A-C-G-T-T-G-G and comparison with isomorphous decamers C-C-A-A-G-A-T-T-G-G and C-C-A-G-G-C-C-T-G-G. J Mol Biol 217:177–199

  23. Alexeev DG, Lipanov AA, Skuratovskii IY (1987) Poly(dA).poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 325:821–823. doi:10.1038/325821a0

    Article  CAS  PubMed  Google Scholar 

  24. Kamal JKA, Xia T, Pal SK, Zhao L, Zewail AH (2004) Enzyme functionality and solvation of subtilisin carlsberg: From hours to femtoseconds. Chem Phys Lett 387:209–215. doi:10.1016/j.cplett.2004.02.011

    Article  CAS  Google Scholar 

  25. Pal SK, Zhao L, Xia T, Zewail AH (2003) Site and sequence selective ultrafast hydration of DNA. Proc Natl Acad Sci USA 100:13746–13751. doi:10.1073/pnas.2336222100

    Article  CAS  PubMed  Google Scholar 

  26. Gu W, Schoenborn BP (1995) Molecular dynamics simulation of hydration in myoglobin. Proteins 22:20–26. doi:10.1002/prot.340220104

    Article  CAS  PubMed  Google Scholar 

  27. Ramakrishnan V (1997) Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 26:83–112. doi:10.1146/annurev.biophys.26.1.83

    Article  CAS  PubMed  Google Scholar 

  28. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150. doi:10.1038/nature01595

    Article  CAS  PubMed  Google Scholar 

  29. Laigle A, Chinsky L, Turpin PY, Liquier J, Taillandier E (1982) In vitro recognition of DNA base pairs by histones in histone-DNA complexes and reconstituted core particles: an ultraviolet resonance Raman study. Nucleic Acids Res 10:7395–7404. doi:10.1093/nar/10.22.7395

    Article  CAS  PubMed  Google Scholar 

  30. Moon JH, Kim SK, Sehlstedt U, Rodger A, Norden B (1996) DNA structural features responsible for sequence-dependent binding geometries of Hoechst 33258. Biopolymers 38:593–606. doi:10.1002/(SICI)1097-0282(199605)38:5<593::AID-BIP5>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

DB, AM thanks CSIR, India for fellowship. We thank DST for financial grant (SR/SO/BB-15/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, D., Makhal, A. & Pal, S.K. Sequence Dependent Femtosecond-Resolved Hydration Dynamics in the Minor Groove of DNA and Histone—DNA Complexes. J Fluoresc 19, 1111–1118 (2009). https://doi.org/10.1007/s10895-009-0512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0512-9

Keywords

Navigation