Skip to main content
Log in

Two-Color Two-Photon Fluorescence Laser Scanning Microscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present the first realization of a Two-Color Two-Photon Laser-Scanning Microscope (2c2pLSM) and UV fluorescence images of cells acquired with this technique. Fluorescence is induced by two-color two-photon absorption using the fundamental and the second harmonic of a Ti:Sa femtosecond laser. Simultaneous absorption of an 800 nm photon and a 400 nm photon energetically corresponds to one-photon absorption at 266 nm. This technique for Laser-Scanning Microscopy extends the excitation wavelength range of a Ti:Sa powered fluorescence microscope to the UV. In addition to the known advantages of multi-photon microscopy like intrinsic 3D resolution, reduced photo damage and high penetration depth 2c2pLSM offers the possibility of using standard high numeric aperture objectives for UV fluorescence imaging. The effective excitation wavelength of 266 nm corresponds especially well to the excitation spectrum of tryptophan. Hence, it is an ideal tool for label free fluorescence studies and imaging of intrinsic protein fluorescence which originates mainly from tryptophan. Thus a very sensitive natural lifetime probe can be used for monitoring protein reactions or changes in conformation. First measurements of living MIN-6 cells reveal differences between the UV fluorescence lifetimes of the nucleus and cytoplasm. The significance of this method was further demonstrated by monitoring the binding of biotin to avidin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:933. doi:10.1038/nmeth818

    Article  Google Scholar 

  2. Bird D, Gu M (2003) Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt Lett 28(17):1552. doi:10.1364/OL.28.001552

    Article  PubMed  Google Scholar 

  3. Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30(17):2272. doi:10.1364/OL.30.002272

    Article  PubMed  Google Scholar 

  4. König K, Riemann I, Ehlers A, Buckle R, Dimitrow E, Kaatz M, Fluhr J, Elsner P (2006) In vivo multiphoton tomography of skin cancer. Proc. SPIE 6089

  5. Zipfel WR, Wiliams RM, Christie R, Nikitin AY, Hyman B, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12):7075. doi:10.1073/pnas.0832308100

    Article  CAS  PubMed  Google Scholar 

  6. Quentmeier S, Denicke S, Ehlers J-E, Niesner RA, Gericke K-H (2008) Two-color two-photon excitation using femtosecond laser pulses. J Phys Chem B 112:5768. doi:10.1021/jp7113994

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Midorikawa K (2004) Two-color two-photon 4Pi fluorescence microscopy. Opt Lett 29(12):1354. doi:10.1364/OL.29.001354

    Article  PubMed  Google Scholar 

  8. Blanca CM, Saloma C (2001) Two-color excitation fluorescence microscopy through highly scattering media. Appl Opt 40(16):2722. doi:10.1364/AO.40.002722

    Article  CAS  PubMed  Google Scholar 

  9. Lakowicz JR, Gryczynsiki I, Malak H, Gryczynski Z (1996) Two-color two-photon excitation of fluorescence. Photochem Photobiol 64(4):632. doi:10.1111/j.1751-1097.1996.tb03116.x

    Article  CAS  PubMed  Google Scholar 

  10. Dobrydnev B, Havey M (1995) Theoretical investigation of two-color, two-photon, 6s 2S1/2-->5d 2Dj-->11p 2P3/2 excitation and depolarization spectra in atomic Cs. Phys Rev 52(5):4010. doi:10.1103/PhysRevA.52.4010

    Article  CAS  Google Scholar 

  11. Cambaliza MO, Saloma C (2000) Advantages of two-color excitation fluorescence microscopy with two confocal excitation beams. Opt Commun 184:25. doi:10.1016/S0030-4018(00)00929-9

    Article  CAS  Google Scholar 

  12. Gryczynski I, Malak H, Lakowicz JR (1997) Two-color two-photon excitation of Indole. Biospec 3(2):97. doi:10.1002/(SICI)1520-6343(1997)3:2<97::AID-BSPY2>3.0.CO;2-P

    Article  CAS  Google Scholar 

  13. Lim M, Saloma C (2003) Primary spherical aberration in two-color two-photon excitation fluorescence microscopy with two confocal excitation beams. Appl Opt 42(17):3398. doi:10.1364/AO.42.003398

    Article  PubMed  Google Scholar 

  14. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  15. Engelborghs Y (2001) The analysis of time resolved protein fluorescence in multi-tryptophan proteins. Spectrochimica Acta 57:2255. doi:10.1016/S1386-1425(01)00485-1

    Article  CAS  PubMed  Google Scholar 

  16. Kurzban GP, Gitlin G, Bayer EA, Wilchek M, Horowitz PM (1990) Biotin binding changes the conformation and decreases tryptophan accessibility of streptavidin. J Protein Chem 9(6):673. doi:10.1007/BF01024762

    Article  CAS  PubMed  Google Scholar 

  17. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225. doi:10.1039/b201230h

    Article  CAS  PubMed  Google Scholar 

  18. Gan XS, Gu M (2000) Fluorescence microscopic imaging through tissue-like turbid media. J Appl Phys 87(7):3214. doi:10.1063/1.372326

    Article  CAS  Google Scholar 

  19. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015. doi:10.1016/S0006-3495(98)77643-X

    Article  CAS  PubMed  Google Scholar 

  20. Kenworthy AK (2007) Fluorescence recovery after photobleaching studies of lipid rafts. Methods Mol Biol 398:179. doi:10.1007/978-1-59745-513-8_13

    Article  CAS  PubMed  Google Scholar 

  21. Fleming GR, Morris JM, Robbins RJ, Woolfe GJ, Thistlethwaite PJ, Robinson GW (1978) Nonexponential fluorescence decay of aqueous tryptophan and two related peptides by picosecond spectroscopy. Proc Natl Acad Sci USA 75(10):4652. doi:10.1073/pnas.75.10.4652

    Article  CAS  PubMed  Google Scholar 

  22. Siemiarczuk A, Petersen CE, Ha C-E, Yang J, Bhagavan NV (2004) Analysis of tryptophan fluorescence lifetimes on a series of human serum albumin mutants with substitutions in subdomain A. Cell Biochem Biophys 40:115. doi:10.1385/CBB:40:2:115

    Article  CAS  PubMed  Google Scholar 

  23. Niesner R, Peker B, Schlüsche P, Gericke K-H (2004) Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. ChemPhysChem 5:1141. doi:10.1002/cphc.200400066

    Article  CAS  PubMed  Google Scholar 

  24. Turconi S, Bingham RP, Haupts U, Pope AJ (2001) Developments in fluorescence lifetime-based analysis for ultra-HTS. Drug Discov Today 6(12):SS27

    Google Scholar 

  25. Pugliese L, Malcovati M, Coda A, Bolognesi M (1994) Crystal structure of apo-avidin from hen egg-white. J Mol Biol 235(1):42. doi:10.1016/S0022-2836(05)80010-5

    Article  CAS  PubMed  Google Scholar 

  26. Mei G, Pugliese L, Rosato N, Toma L, Bolognesi M, Finazzi-Agrò A (1994) Biotin and biotin analogues specifically modify the fluorescence decay of avidin. J Mol Biol 242:559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Quentmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quentmeier, S., Denicke, S. & Gericke, KH. Two-Color Two-Photon Fluorescence Laser Scanning Microscopy. J Fluoresc 19, 1037–1043 (2009). https://doi.org/10.1007/s10895-009-0503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0503-x

Keywords

Navigation