Skip to main content
Log in

Fluorescence study on Interactions of α–Crystallin with the Molten Globule State of 1, 4–β–D–Glucan Glucanohydrolase from Thermomonospora sp. induced by guanidine hydrochloride

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, the interaction between α- crystallin and molten globule structure of 1,4–β–D–Glucan Glucohydrolase (TSC) from an alkalothermophilic Thermomonospora sp. was investigated mainly by fluorescence quenching spectra, circular dichroism and three dimensional fluorescence spectra under simulative physiological conditions. Denaturation studies using GdnCl indicated that TSC folds through a partially folded state that resembles molten globule at 1.8 M GdnCl. The chaperone activity of α- crystallin was employed to study refolding of TSC. Here we studied the refolding of GdnCl denatured TSC from its molten globule state (TSC-m complex) in the presence and absence of α-crystallin to elucidate the molecular mechanism of chaperone-mediated in vitro folding. Our results, based on intrinsic tryptophan fluorescence and ANS binding studies, suggest that α-crystallin formed a complex with a putative intermediate molten globule – like intermediate in the refolding pathway of TSC. Reconstitution of the active TSC was observed on cooling the α-crystallin • TSC -m complex to 4°C. Addition of α-crystallin to the molten globule – like intermediate of TSC (TSC-m complex) complex initiated the refolding of TSC with 69 % recovery of the biological activity of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230. doi:10.1126/science.181.4096.223

    Article  CAS  PubMed  Google Scholar 

  2. Jaenicke R (1987) Folding and association of proteins. Prog Biophys Mol Biol 49:117–237. doi:10.1016/0079-6107(87)90011-3

    Article  CAS  PubMed  Google Scholar 

  3. Jaenicke R, Rudolph R (1986) Refolding and association of oligomeric proteins Methods Enzymol. Enzyme Structure part L 131:218–250

    Article  CAS  Google Scholar 

  4. Arai M, Kuwajima K (2000) Role of the molten globule state in protein folding. Adv Protein Chem 53:209–271. doi:10.1016/S0065-3233(00)53005-8 Protein folding mechanisms

    Article  CAS  PubMed  Google Scholar 

  5. Lang K, Schmid FX, Fisher G (1987) Catalysis of protein folding by prolyl isomerase. Nature 329:268–270. doi:10.1038/329268a0

    Article  CAS  PubMed  Google Scholar 

  6. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384. doi:10.1146/annurev.bi.62.070193.002025

    Article  CAS  PubMed  Google Scholar 

  7. Siezen RJ, Argos P (1983) Structural homology of lens crystallins. III. Secondary structure estimation from circular dichroism and prediction from amino acid sequences. Biochim Biophys Acta 748:56–67

    CAS  PubMed  Google Scholar 

  8. Montfort RV, Slingsby C, Vierlingt E (2001) Structure and function of the small heat shock protein/α-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156. doi:10.1016/S0065-3233(01)59004-X Protein folding in the cell

    Article  PubMed  Google Scholar 

  9. Klemenz R, Frohli E, Steiger RH, Schafer R, Aoyama A (1991) α B-Crystallin is a small heat shock protein. Proc Natl Acad Sci USA 88:3652–3656. doi:10.1073/pnas.88.9.3652

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz J (1993) Proctor Lecture. The function of alpha-crystallin. Invest Ophthalmol Vis Sci 34:10–21

    CAS  PubMed  Google Scholar 

  11. Kelley MJ, David I, Iwasaki N, Wright J, Shearer TR (1993) α-crystallin chaperone activity is reduced by calpain II in vitro and in selenite cataract. J Biol Chem 268:18844–18849

    CAS  PubMed  Google Scholar 

  12. Lorimer GH, Baldwin TO (1998) Lens crystallin: chaperone like properties methods Enzymol. Molecular Chaperones 290:365–384

    Article  Google Scholar 

  13. Raman B, Rao CM (1994) Chaperone-like activity and quaternary structure of alpha-crystallin. J Biol Chem 269:27264–27268

    CAS  PubMed  Google Scholar 

  14. Groenen PJ, Merck KB, de Jong WW, Bloemendal H (1994) Structure and modifications of the junior chaperone alpha-crystallin: from lens transparency to molecular pathology. Eur J Biochem 225:1–19. doi:10.1111/j.1432-1033.1994.00001.x

    Article  CAS  PubMed  Google Scholar 

  15. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  16. Jagtap S, Rao M (2005) Purification and properties of a low molecular weight 1, 4-β–D–Glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem Biophys Res Commun 329:111–116. doi:10.1016/j.bbrc.2005.01.102

    Article  CAS  PubMed  Google Scholar 

  17. Jagtap S, Rao M (2006) Conformation and microenvironment of the active site of a low molecular weight 1,4–β–D–Glucan Glucanohydrolase from an alkalothermophilic Thermomonospora sp.: Involvement of a lysine and cysteine residue. Biochem Biophys Res Commun 347:428–432. doi:10.1016/j.bbrc.2006.06.100

    Article  CAS  PubMed  Google Scholar 

  18. Labhardt AM (1986) Folding intermediates studied by circular dichroism. Methods Enzymol 131:126–135. doi:10.1016/0076-6879(86)31038-3

    Article  CAS  PubMed  Google Scholar 

  19. Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072. doi:10.1073/pnas.83.21.8069

    Article  CAS  PubMed  Google Scholar 

  20. Surewicz WK, Olesen PR (1995) On the thermal stability of alpha-crystallin: a new insight from infrared spectroscopy. Biochemistry 34:9655–9660. doi:10.1021/bi00030a001

    Article  CAS  PubMed  Google Scholar 

  21. Bychkova VE, Pain RH, Ptitsyn OB (1988) The ‘molten globule’ state is involved in the translocation of proteins across membranes? FEBS Lett 238:231–234. doi:10.1016/0014-5793(88)80485-X

    Article  CAS  PubMed  Google Scholar 

  22. Raman B, Ramakrishna T, Rao CM (1997) Effect of the chaperone-like alpha-crystallin on the refolding of lysozyme and ribonuclease A. FEBS Lett 416:369–372. doi:10.1016/S0014-5793(97)01240-4

    Article  CAS  PubMed  Google Scholar 

  23. Das KP, Petrash JM, Surewicz WK (1996) Conformational properties of substrate proteins bound to a molecular chaperone α-crystallin. J Biol Chem 271:10449–10452. doi:10.1074/jbc.271.28.16934

    Article  CAS  PubMed  Google Scholar 

  24. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol 131:266–280. doi:10.1016/0076-6879(86)31045-0

    Article  CAS  PubMed  Google Scholar 

  25. Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei: evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 278:45011–45020. doi:10.1074/jbc.M302372200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The senior research fellowship to Sharmili Jagtap by the University Grants Commission is gratefully acknowledged. MR acknowledges the CSIR Emeritus scheme for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagtap, S., Rao, M. Fluorescence study on Interactions of α–Crystallin with the Molten Globule State of 1, 4–β–D–Glucan Glucanohydrolase from Thermomonospora sp. induced by guanidine hydrochloride. J Fluoresc 19, 967–973 (2009). https://doi.org/10.1007/s10895-009-0496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0496-5

Keywords

Navigation