Skip to main content
Log in

Second-Derivative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Fluphenazine Hydrochloride and Nortriptyline Hydrochloride in Pharmaceutical Preparations

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A rapid, simple, and highly sensitive second-derivative synchronous fluorimetric (SDSF) method has been developed for the simultaneous analysis of binary mixtures of fluphenazine hydrochloride (FLZ) and nortriptyline hydrochloride (NTP) in their co-formulated tablets. The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Δλ) = 120 nm in acetic acid. The different experimental parameters affecting the fluorescence intensity of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.25–3.0 and 1–10 μg/ml for FLZ and NTP respectively, with lower detection limits (LOD) of 0.05 and 0.18 μg/ml and quantitation limits of 0.15 and 0.53 μg/ml for FLZ and NTP respectively. The proposed method was successfully applied for the determination of the studied compounds in their synthetic mixtures and in commercial co-formulated tablets. The results obtained were in good agreement with those obtained by the reference methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reynolds JEF (1999) Martindale, The Extra Pharmacopoeia, 32st edn. The Pharmaceutical, Massachusetts, pp 810–812

    Google Scholar 

  2. Agarwal SP, Blake MI (1969) Analysis of certain phenothiazines and their dosage forms by photometric titration with ceric sulfate. J Pharm Sci 58:1011–1013. doi:10.1002/jps.2600580825

    Article  PubMed  CAS  Google Scholar 

  3. Saldanha RJD, Ananda S, Venkatesha BM, Made Gowda NM (2002) Oxidation of psychotropic drugs by Chloramine-T in acid medium: a kinetic study using spectrophotometry. J Mol Struct 606:147–154. doi:10.1016/S0022-2860(01)00859-6

    Article  CAS  Google Scholar 

  4. Laredo Ortiz S, Gómez Benito C, Martínez Calatayud J (1993) Determination of fluphenazine hydrochloride in a flow assembly incorporating cerium (IV) arsenite as a solid-bed sector. Anal Chim Acta 276:281–286. doi:10.1016/0003-2670(93)80395-2

    Article  CAS  Google Scholar 

  5. Monzón LMA, Yudi LM (2006) Effect of electron acceptor groups on partition coefficient of phenothiazine derivatives at the water 1, 2-dichloroethane interface. J Electroanal Chem 591:46–52. doi:10.1016/j.jelechem.2006.03.017

    Article  Google Scholar 

  6. Şentürk Z, Özkan SA, Uslu B, Biryol I (1996) Anodic voltammetry of fluphenazine at different solid electrodes. J Pharm Biomed Anal 15:365–370

    Article  PubMed  Google Scholar 

  7. Crespi F, England TG, Trist DG (1995) Simultaneous, selective detection of catecholaminergic and indolaminergic signals using cyclic voltammetry with treated micro-sensor. J Neurosci Methods 61:201–212. doi:10.1016/0165-0270(94)00043-G

    Article  PubMed  CAS  Google Scholar 

  8. Jarbawi TB, Heineman WR (1986) Preconcentration of tranquilizers by adsorption/extraction at a wax-impregnated graphite electrode. Anal Chim Acta 186:11–19. doi:10.1016/S0003-2670(00)81769-9

    Article  CAS  Google Scholar 

  9. Roman M, Kronstrand R, Lindstedt D, Josefsson M (2008) Quantitation of seven low-dosage antipsychotic drugs in human postmortem blood using LC-MS-MS. J Anal Toxicol 32:147–155

    PubMed  CAS  Google Scholar 

  10. Tanaka E, Nakamura T, Terada M, Shinozuka T, Hashimoto C, Kurihara K, Honda K (2007) Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 854:116–120. doi:10.1016/j.jchromb.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  11. Kirchherr H, Kühn-Velten WN (2006) Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: a multi-level, single-sample approach. J Chromatogr B Analyt Technol Biomed Life Sci 843:100–113. doi:10.1016/j.jchromb.2006.05.031

    Article  PubMed  CAS  Google Scholar 

  12. Kratzsch C, Peters FT, Kraemer T, Weber AA, Maurer HH (2003) Screening, library-assisted identification and validated quantification of fifteen neuroleptics and three of their metabolites in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J Mass Spectrom 38:283–295. doi:10.1002/jms.440

    Article  PubMed  CAS  Google Scholar 

  13. Luo JP, Hubbard JW, Midha KK (1997) Sensitive method for the simultaneous measurement of fluphenazine decanoate and fluphenazine in plasma by high-performance liquid chromatography with coulometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 688:303–308. doi:10.1016/S0378-4347(96)00287-3

    Article  CAS  Google Scholar 

  14. Mann B, Grayeski ML (1991) Evaluation of peroxyoxalate chemiluminescence postcolumn detection of fluphenazine in urine and blood plasma using high performance liquid chromatography. Biomed Chromatogr 5:47–52. doi:10.1002/bmc.1130050111

    Article  PubMed  CAS  Google Scholar 

  15. Maślanka A, Krzek J (2005) Densitometric high performance thin-layer chromatography identification and quantitative analysis of psychotropic drugs. J AOAC Int 88:70–79

    PubMed  Google Scholar 

  16. Misiuk W, Tykocka A (2007) Sensitive extractive spectrophotometric methods for the determination of nortriptyline hydrochloride in pharmaceutical formulations. Chem Pharm Bull (Tokyo) 55:1655–1661. doi:10.1248/cpb.55.1655

    Article  CAS  Google Scholar 

  17. El Ragehy NA, Abbas SS, El-Khateeb SZ (2001) Stability indicating method for determination of nortriptyline hydrochloride using 3-methyl-2-benzothiazolinone hydrazone (MBTH). J Pharm Biomed Anal 25:143–151. doi:10.1016/S0731-7085(00)00484-2

    Article  PubMed  CAS  Google Scholar 

  18. Attia FM (2000) Use of charge-transfer complex formation for the spectrophotometric determination of nortriptyline. Farmaco 55:659–664. doi:10.1016/S0014-827X(00)00082-3

    Article  PubMed  CAS  Google Scholar 

  19. Moreno MA, Ballesteros MP, Frutos P, Lastres JL, Castro D (2000) Comparison of UV spectrophotometric and LC methods for the determination of nortriptyline hydrochloride in polysorbate 80 based oil/water (o/w) microemulsions. J Pharm Biomed Anal 22:287–294. doi:10.1016/S0731-7085(99)00285-X

    Article  PubMed  CAS  Google Scholar 

  20. de la Peña L, Gómez-Hens A, Pérez-Bendito D (1995) Kinetic determination of nortriptyline in pharmaceutical samples by use of photometric and fluorimetric detection. J Pharm Biomed Anal 13:199–203. doi:10.1016/0731-7085(95)01267-O

    Article  PubMed  Google Scholar 

  21. Bordes AL, Schöllhorn B, Limoges B, Degrand C (1999) Simultaneous detection of three drugs labeled by cationic metal complexes at a nafion-loaded carbon paste electrode. Talanta 48:201–208. doi:10.1016/S0039-9140(98)00238-0

    Article  PubMed  CAS  Google Scholar 

  22. Santos-Neto AJ, Bergquist J, Lanças FM, Sjöberg PJ (2008) Simultaneous analysis of five antidepressant drugs using direct injection of biofluids in a capillary restricted-access media-liquid chromatography-tandem mass spectrometry system. J Chromatogr A 1189:514–522. doi:10.1016/j.chroma.2008.02.107

    Article  PubMed  CAS  Google Scholar 

  23. Misiuk W, Tykocka A (2007) Sensitive extractive spectrophotometric methods for the determination of nortriptyline hydrochloride in pharmaceutical formulations. Chem Pharm Bull (Tokyo) 55:1655–1661. doi:10.1248/cpb.55.1655

    Article  CAS  Google Scholar 

  24. Woźniakiewicz M, Wietecha-Posłuszny R, Garbacik A, Kościelniak P (2008) Microwave-assisted extraction of tricyclic antidepressants from human serum followed by high performance liquid chromatography determination. J Chromatogr A 1190:52–56. doi:10.1016/j.chroma.2008.03.013

    Article  PubMed  Google Scholar 

  25. Titier K, Castaing N, Le-Déodic M, Le-Bars D, Moore N, Molimard M (2007) Quantification of tricyclic antidepressants and monoamine oxidase inhibitors by high-performance liquid chromatography-tandem mass spectrometry in whole blood. J Anal Toxicol 31:200–207

    PubMed  CAS  Google Scholar 

  26. Alves C, Fernandes C, Dos Santos Neto AJ, Rodrigues JC, Costa Queiroz ME, Lanças FM (2006) Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. J Chromatogr Sci 44:340–346

    PubMed  CAS  Google Scholar 

  27. Shinozuka T, Terada M, Tanaka E (2006) Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method. Forensic Sci Int 162:108–112. doi:10.1016/j.forsciint.2006.03.038

    Article  PubMed  CAS  Google Scholar 

  28. McCalley DV (2006) Overload for ionized solutes in reversed-phase high-performance liquid chromatography. Anal Chem 78:2532–2538. doi:10.1021/ac052098b

    Article  PubMed  CAS  Google Scholar 

  29. Davies NH, Euerby MR, McCalley DV (2006) Study of overload for basic compounds in reversed-phase high performance liquid chromatography as a function of mobile phase pH. J Chromatogr A 1119:11–19. doi:10.1016/j.chroma.2005.11.096

    Article  PubMed  CAS  Google Scholar 

  30. Gritti F, Guiochon G (2005) Separation mechanism of nortriptyline and amytriptyline in RPLC. J Chromatogr A 1090:39–57. doi:10.1016/j.chroma.2005.06.079

    Article  PubMed  CAS  Google Scholar 

  31. Bose D, Durgbanshi A, Martinavarro-Domínguez A, Capella-Peiró ME, Carda-Broch S, Esteve-Romero J, Gil-Agustí M (2005) Amitriptyline and nortriptyline serum determination by micellar liquid chromatography. J Pharmacol Toxicol Methods 52:323–329. doi:10.1016/j.vascn.2005.04.015

    Article  PubMed  CAS  Google Scholar 

  32. Hostetter AL, Stowe ZN, Cox M, Ritchie JC (2004) A novel system for the determination of antidepressant concentrations in human breast milk. Ther Drug Monit 26:47–52. doi:10.1097/00007691-200402000-00011

    Article  PubMed  CAS  Google Scholar 

  33. Frahnert C, Rao ML, Grasmäder K (2003) Analysis of eighteen antidepressants, four atypical antipsychotics and active metabolites in serum by liquid chromatography: a simple tool for therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 794:35–47. doi:10.1016/S1570-0232(03)00393-3

    Article  PubMed  CAS  Google Scholar 

  34. Kollroser M, Schober C (2002) Simultaneous determination of seven tricyclic antidepressant drugs in human plasma by direct-injection HPLC-APCI-MS-MS with an ion trap detector. Ther Drug Monit 24:537–544. doi:10.1097/00007691-200208000-00013

    Article  PubMed  CAS  Google Scholar 

  35. Oztunc A, Onal A, Erturk S (2002) 7, 7, 8, 8-Tetracyanoquinodimethane as a new derivatization reagent for high-performance liquid chromatography and thin-layer chromatography: rapid screening of plasma for some antidepressants. J Chromatogr B Analyt Technol Biomed Life Sci 774:149–155. doi:10.1016/S1570-0232(02)00166-6

    Article  PubMed  CAS  Google Scholar 

  36. McCalley DV (2000) Effect of temperature and flow-rate on analysis of basic compounds in high-performance liquid chromatography using a reversed-phase column. J Chromatogr A 902:311–321. doi:10.1016/S0021-9673(00)00924-9

    Article  PubMed  CAS  Google Scholar 

  37. Olesen OV, Plougmann P, Linnet K (2000) Determination of nortriptyline in human serum by fully automated solid-phase extraction and on-line high-performance liquid chromatography in the presence of antipsychotic drugs. J Chromatogr B Analyt Technol Biomed Life Sci 746:233–239. doi:10.1016/S0378-4347(00)00332-7

    Article  CAS  Google Scholar 

  38. Lucca A, Gentilini G, Lopez-Silva S, Soldarini A (2000) Simultaneous determination of human plasma levels of four selective serotonin reuptake inhibitors by high-performance liquid chromatography. Ther Drug Monit 22:271–276. doi:10.1097/00007691-200006000-00007

    Article  PubMed  CAS  Google Scholar 

  39. Cantú MD, Hillebrand S, Queiroz MEC, Lanças FM, Carrilho E (2004) Validation of non-aqueous capillary electrophoresis for simultaneous determination of four tricyclic antidepressants in pharmaceutical formulations and plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 799:127–132. doi:10.1016/j.jchromb.2003.10.037

    Article  Google Scholar 

  40. The British Pharmacopoeia (2008) The Stationary Office: London, Electronic Version

  41. United States Pharmacopoeia XXX: the National Formulary XXV; United States pharmacopoeial convention (2008) Rockville, MD, Electronic Version

  42. Florey K (1973) Analytical Profiles of Drug Substances and Excipients. Academic, New York, 2, pp 263-294

  43. Hale JL, Florey K (eds.) (1972) Analytical Profiles of Drug Substances and Excipients, Academic, New York, 1, pp 233-247

  44. Sa’sa’ SI, Jalal I (1988) Determination of nortriptyline hydrochloride and fluphenazine hydrochloride in commercial tablets by reverse phase high-performance liquid chromatography. Microchem J 38:181–187. doi:10.1016/0026-265X(88)90019-7

    Article  Google Scholar 

  45. Chen GZ, Huang XZ, Xu JG, Zheng ZZ, Wang ZB (1990) The Methods Of Fluorescence Analysis, 2nd edn. Science, Beijing, R.P. China, p 112

    Google Scholar 

  46. Patra D, Mishra AK (2002) Recent developments in multi-component synchronous fluorescence scan analysis. Trends Analyt Chem 21:787–798. doi:10.1016/S0165-9936(02)01201-3

    Article  CAS  Google Scholar 

  47. Lloyd JBF (1971) Nat Phys Sci (Lond) 231:64

    Google Scholar 

  48. John P, Soutar I (1976) Identification of crude oils by synchronous excitation spectrofluorimetry. Anal Chem 48:520. doi:10.1021/ac60367a013

    Article  CAS  Google Scholar 

  49. Aodeng GW, Zhang Y, Fan HY (2006) Determination of metacycline in mixture sample by synchronous-derivative fluorimetry. Guang Pu Xue Yu Guang Pu Fen Xi 26:1530–1532

    PubMed  CAS  Google Scholar 

  50. Karim MM, Jeon CW, Lee HS, Alam SM, Lee SH, Choi JH, Jin SO, Das AK (2006) Simultaneous determination of acetylsalicylic acid and caffeine in pharmaceutical formulation by first derivative synchronous fluorimetric method. J Fluoresc 16:713–721. doi:10.1007/s10895-006-0115-7

    Article  PubMed  CAS  Google Scholar 

  51. Wei YF, Li XH, Ma DM (2005) Simultaneous determination of aspirin and salicyclic acid by synchronous fluorescence spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi 25:588–590

    PubMed  CAS  Google Scholar 

  52. Murillo Pulgarin JA, Alanon Molina A, Fernandez Lopez P, Sanchez-Ferrer Robles I (2007) Direct determination of closely overlapping drug mixtures of diflunisal and salicylic acid in serum by means of derivative matrix isopotential synchronous fluorescence spectrometry. Anal Chim Acta 583:55–62. doi:10.1016/j.aca.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  53. Wang HY, Xiao Y, Han J (2005) Simultaneous determination of carvedilol and ampicillin sodium by first-derivative fluorometry in the presence of human serum albumin. Anal Sci 21:537–540. doi:10.2116/analsci.21.537

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez-Gonzalez R, Garcia-Falcon MS, Simal-Gandara J (2002) Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry. Anal Chim Acta 455:143–148. doi:10.1016/S0003-2670(01)01590-2

    Article  CAS  Google Scholar 

  55. Tomas PR, Carmen ML, Virginia T, Jose C (1998) Analysis of binary mixtures of flufenamic, meclofenamic and mefenamic acids by derivative synchronous fluorescence spectrometry. Talanta 47:537–545. doi:10.1016/S0039-9140(98)00086-1

    Article  PubMed  Google Scholar 

  56. Walash MI, Belal F, El Enany N, Abdelal AA (2008) Second-derivative synchronous fluorometric method for the simultaneous determination of cinnarizine and domperidone in pharmaceutical preparations. Application to biological fluids. J Fluoresc 18:61–74. doi:10.1007/s10895-007-0238-5

    Article  PubMed  CAS  Google Scholar 

  57. Walash MI, Belal F, El Enany N, Abdelal AA (2008) Second-derivative synchronous fluorescence spectroscopy for the simultaneous determination of cinnarizine and nicergoline in pharmaceutical preparations. J AOAC Int 91:349–359

    PubMed  CAS  Google Scholar 

  58. Guidance for industry; Q2B of analytical procedure: Methodology; International Conference on Hormonization (ICH), November 1996. http://www.fda.gov/eder/guidance/1320fnl

  59. Miller JC, Miller J-N (2005) Statistics for analytical chemistry. Wiley, New York, p 256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. El-Enany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walash, M.I., El-Brashy, A., El-Enany, N. et al. Second-Derivative Synchronous Fluorescence Spectroscopy for the Simultaneous Determination of Fluphenazine Hydrochloride and Nortriptyline Hydrochloride in Pharmaceutical Preparations. J Fluoresc 19, 891–904 (2009). https://doi.org/10.1007/s10895-009-0488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0488-5

Keywords

Navigation