Skip to main content
Log in

Effect of Matrix Treatment on Spectroscopic Properties of HCl Catalysed Sol-Gel Glasses Containing Coumarin Laser Dyes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Coumarin 1, Coumarin 2 and Coumarin 120 are embedded in transparent sol-gel glass samples prepared by sol-gel process using dip method. The sol-gel matrix is given dip treatment with Methanol /Distilled Water (50/50vol) for 1 to 16h before dipping into dye solution. The effect of dipping time of matrix in Methanol/ Distilled Water on spectroscopic properties of coumarin dye doped glass samples has been studied. The Optical Density (OD) at absorption maximum wavelength and Fluorescence Intensity (FI) at fluorescence maximum wavelength of all coumarin dyes increase with the time of dipping of the sol-gel sample. These absorption/fluorescence properties of coumarin dyes in sol-gel glass matrices are compared with its respective properties in methanolic solution in acidic environment. The cause of these changes in OD/FI with dipping time is discussed by taking into account the absorption / fluorescence of dye in acidified methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schafer FP (1989) Topics in applied physics vol 1, in: Dye lasers. Springer, New York

    Google Scholar 

  2. Avnir D, Levy D, Reisfeld R (1984) The nature of silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J. Phys. Chem. 88:5956–5959 doi:10.1021/j150668a042

    Article  CAS  Google Scholar 

  3. Avnir D, Kaufman VR, Reisfeld R (1985) Organic fluorescent dyes trapped in silica and silica-titania thin films by the sol-gel method. Photophysical, film and cage properties. Jn. Non-Cryst. Solids. 74:395–406

    Article  CAS  Google Scholar 

  4. Deshpande AV, Panhalkar RR (2002) Spectroscopic properties of coumarin 2 in HCl and HNO3 catalysed sol-gel glasses. J. Lumin. 96:185–193 doi:10.1016/S0022-2313(01)00218-6

    Article  CAS  Google Scholar 

  5. Deshpande AV, Kumar U (2002) Effect of method of preparation on photophysical properties of Rh-B impregnated sol-gel hosts. Jn. Non-Cryst. Solids. 306:149–159

    Article  CAS  Google Scholar 

  6. Sastre R, Costela A (1995) Polymeric solid-state dye lasers. Adv. Mater. 7:198–202 doi:10.1002/adma.19950070222

    Article  CAS  Google Scholar 

  7. Rahn MD, King TA (1995) Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly (methyal methacrylate) host media. Appl. Opt. 34:8260–8271

    Article  CAS  Google Scholar 

  8. Popov S (1998) Dye photodestruction in a solid-state dye laser with a polymeric gain medium. Appl. Opt. 37(27):6449–6455 doi:10.1364/AO.37.006449

    Article  PubMed  CAS  Google Scholar 

  9. Bakr NA, Mansour AF, Hammam M (1999) Optical and thermal spectroscopic studies of luminescent dye doped poly(methyl methacrylate) as solar concentrator. J. Appl. Polym. Sci. 74(14):3316–3323 doi:10.1002/(SICI)1097-4628(19991227)74:14<3316::AID-APP4>3.0.CO;2-U

    Article  CAS  Google Scholar 

  10. Huang J, Bekiari V, Lianos P (1999) Study of poly(methyl methacrylate) thin films doped with laser dyes. J. Lumin. 81(4):285–291 doi:10.1016/S0022-2313(99)00010-1

    Article  CAS  Google Scholar 

  11. Deshpande AV, Namdas EB (1996) Efficient lasing action of rhodamine 6G in Nafion membranes. Chem. Phys. Lett. 263:449–455 doi:10.1016/S0009-2614(96)01247-X

    Article  CAS  Google Scholar 

  12. Deshpande AV, Namdas EB (1997) Lasing action of rhodamine B in polyacrylic acid films. Appl. Phys. B 64:419–422 doi:10.1007/s003400050193

    Article  CAS  Google Scholar 

  13. Deshpande AV, Kumar U (2006) Molecular forms of coumarin-307 in sol-gel glasses. J. Fluoresc. 16:679–687 doi:10.1007/s10895-006-0109-5

    Article  PubMed  CAS  Google Scholar 

  14. Lo D, Lam SK (1998) Lasing behaviour of sol-gel silica doped with uv laser dyes. Appl. Phys. B 66:427–430 doi:10.1007/s003400050413

    Article  Google Scholar 

  15. Li D, Zhao W, Sun X, Zhang J, Anpo M, Zhao J (2006) Photophysical properties of coumarin derivatives incorporated in MCM-41. Dyes Pigments 68:33–37 doi:10.1016/j.dyepig.2004.12.015

    Article  CAS  Google Scholar 

  16. Suratwala T, Garadlund Z, Davidson K, Uhlmann DR (1998) Silyated coumarin dyes in sol-gel hosts. 2. photostability and sol-gel processing. Chem. Mater. 10:199–209 doi:10.1021/cm970340s

    Article  CAS  Google Scholar 

  17. Koppylova TN, Mayer GV, Renzichenko AV, Samsonova LG, Sevetlichnyi VA, Dolotov MS, Tavrizova MT (2004) Active media for tunable blue-green lasers based on aminocoumarins in polymethylmethacrylate. Appl. Phys. B 78:183–187 doi:10.1007/s00340-003-1352-y

    Article  CAS  Google Scholar 

  18. Whang CM, Oh EO, Gupta RK (2003) Effect of pH and dye concentration on the optical and structural properties of coumarin-4 dye-doped SiO2-PDMS xerogels. Jn. Sol-Gel Sci. Techno. 28:279–288

    Article  Google Scholar 

  19. Qian G, Yang Y, Su D, Wang Z, Wang M (2005) Luminiscence and laser performance of coumarin dyes doped in ORMOSILs. Mater. Sci. Eng. B 119:192–195 doi:10.1016/j.mseb.2005.02.059

    Article  CAS  Google Scholar 

  20. Unger B, Rurack K, Muller R, Jancke H, Genger U (2005) Microscopic vs. macroscopic structural evolution of SiO2 sols and gels employing a tailor-made fluorescent reporter dye. J. Mater. Chem. 15:3069–3083 doi:10.1039/b501622c

    Article  CAS  Google Scholar 

  21. Lo D, Parris JE, Lawless JL (1993) Laser and fluorescence properties of dye-doped sol-gel silica from 400 nm to 800 nm. Appl. Phys. B 56:385–390 doi:10.1007/BF00324537

    Article  Google Scholar 

  22. Kim G, Lee D, Kim J, Moon J, Lee H (1997) Effect of microstructural change on the optical property of ormosil embedded with organic molecules. Jn. Sol-Gel Sci. Techno. 10:283–289

    Article  CAS  Google Scholar 

  23. Choi D, Lim C, Sohn S (2003) Optical properies of coumarin 314 doped sol-gel silica rods, Optik – International. Jn. for Light and Electron Optics 114:347–350

    Article  CAS  Google Scholar 

  24. Hou L, Hoffmann B, Schmidt H, Menning M (1997) Effect of heat treatment and additivies on the Photochromic and mechanical properties of sol-gel derived photochromic coatings containing spirooxazine. Jn. Sol-Gel Sci. Techno. 8:923–926

    CAS  Google Scholar 

  25. Grandi S, Tomasi C, Mustarelli P, Clemente F, Carbonaro CM (2007) Characterisation of a new sol-gel precursor for a SiO2-rhodamine 6G hybrid class II material. Jn. Sol-Gel Sci. Techno. 41:57–63

    Article  CAS  Google Scholar 

  26. Campillo AJ, Clark JH, Shapiro SL, Winn KR, Woodbridge PK (1979) Excited-state protonation kinetics of coumarin 102. Chem. Phys. Lett. 67(2–3):218–222 doi:10.1016/0009-2614(79)85150-7

    Article  CAS  Google Scholar 

  27. Kunjappu JT (1993) Photophysical properties of five laser dyes (C120, C1, C102, C1F and C153) in homogeneous, surfactant and membrane media, Jn. Photochem. Photobiol. Chem. (Kyoto) 71(3):269–273

    Article  CAS  Google Scholar 

  28. Jones G II, Rahman MA (1994) Fluorescence properties of coumarin laser dyes in aqueous polymer media. Chromophore isolation in poly(methacrylic acid) hypercoils. J. Phys. Chem. 98:13028–13037 doi:10.1021/j100100a035

    Article  CAS  Google Scholar 

  29. Samanta A, Fessenden RW (2000) Excited-state dipole moment of 7-aminocoumarins as determined from time-resolved microwave dielectric absorption measurements. J. Phys. Chem. A 104(37):8577–8582 doi:10.1021/jp001676j

    Article  CAS  Google Scholar 

  30. Fisher A, Cremer C, Sterlzer EHK (1995) Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium—sapphire laser. Appl. Opt. 34(12):1989–2003

    Article  Google Scholar 

  31. Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effect of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg. Chem. 33:415–425 doi:10.1016/j.bioorg.2005.07.005

    Article  PubMed  CAS  Google Scholar 

  32. Arbeloa TL, Arbeloa FL, Tapia MJ, Arbelo IL (1993) Hydrogen-bonding effect on the photophysical properies of 7-aminocoumarin derivatives. J. Phys. Chem. 97:4704–4707 doi:10.1021/j100120a024

    Article  Google Scholar 

  33. Drexhage KH (1989) In F. P. Schafer (Ed.), Dye Lasers, Springer, New York, pp. 172–175

  34. Costela A, Moreno I, Figuera J, Guerri F, Sastre R (1998) Polymeric matrices for lasing dyes: recent development. Laser Chem. 18:63–84 doi:10.1155/1998/71976

    Article  CAS  Google Scholar 

  35. Jones G II, Jackson WR, Choi C, Bergmark WR (1985) Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirments for a rotatory decay mechanism. J. Phys. Chem. 89:294–300 doi:10.1021/j100248a024

    Article  CAS  Google Scholar 

  36. Trozzolo AM, Dienes A, Shank CV (1974) Excited-state reactions of laser dye. Evidence for a two- step phototautomerism in 7-hydroxy-4 methyl coumarin. J. Am. Chem. Soc. 96(14):4699–4700 doi:10.1021/ja00821a070

    Article  CAS  Google Scholar 

  37. Moriya T (1983) Excited-state reactions of coumarins in aqueous solutions. I. The photoautomerization of 7-hydroxycoumarin and its derivative. Bull. Chem. Soc. Jpn. 56:6–14 doi:10.1246/bcsj.56.6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna V. Deshpande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, A.V., Jathar, L.V. & Rane, J.R. Effect of Matrix Treatment on Spectroscopic Properties of HCl Catalysed Sol-Gel Glasses Containing Coumarin Laser Dyes. J Fluoresc 19, 607–614 (2009). https://doi.org/10.1007/s10895-008-0451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0451-x

Keywords

Navigation